AWS Deep Learning Containers发布PyTorch Graviton推理容器v1.33版本
AWS Deep Learning Containers项目是亚马逊云科技提供的预配置深度学习环境容器镜像集合,它集成了主流深度学习框架、依赖库和工具链,可以帮助开发者快速部署机器学习工作负载。这些容器经过AWS官方优化,能够充分发挥AWS基础设施的性能优势。
近日,该项目发布了PyTorch框架针对Graviton处理器的推理容器新版本v1.33。这个版本基于PyTorch 2.4.0构建,专门为AWS自研的Graviton处理器架构优化,适用于CPU推理场景。
核心特性与技术细节
该容器镜像基于Ubuntu 22.04操作系统,预装了Python 3.11环境,包含了完整的PyTorch推理工具链。主要技术亮点包括:
-
PyTorch 2.4.0支持:提供了最新的PyTorch稳定版本,包含性能改进和新特性支持。
-
Graviton处理器优化:针对AWS Graviton处理器架构进行了专门优化,能够充分发挥ARM架构的性能优势。
-
完整推理工具链:预装了torchserve模型服务框架和torch-model-archiver模型归档工具,方便生产环境部署。
-
丰富的科学计算库:包含NumPy 1.26.4、SciPy 1.14.1、Pandas 2.2.3等常用科学计算库,以及OpenCV 4.10.0用于计算机视觉任务。
-
机器学习工具集成:预装了scikit-learn 1.5.2机器学习库,支持传统机器学习算法。
关键软件包版本
该容器镜像中的关键软件包版本经过精心选择和测试,确保兼容性和稳定性:
- 深度学习框架:PyTorch 2.4.0+cpu、TorchVision 0.19.0+cpu、TorchAudio 2.4.0+cpu
- 模型服务:TorchServe 0.12.0、Torch-Model-Archiver 0.12.0
- Python工具链:Cython 3.0.11、setuptools 80.7.1、pip 24.0
- 系统依赖:GCC 10/11工具链、标准C++库等
适用场景
这个容器镜像特别适合以下应用场景:
-
成本敏感的推理工作负载:Graviton处理器相比传统x86架构通常能提供更好的性价比。
-
边缘计算场景:ARM架构的低功耗特性适合边缘设备部署。
-
批处理推理任务:对于不需要GPU加速的中小型模型推理任务。
-
快速原型开发:预配置的环境可以大大减少环境搭建时间。
使用建议
对于考虑使用此容器的开发者,建议:
-
评估模型在Graviton处理器上的性能表现,与x86架构进行对比。
-
对于新项目,可以直接基于此容器镜像构建应用。
-
对于现有项目迁移,建议进行充分的兼容性测试。
-
利用TorchServe简化模型部署和服务化过程。
这个版本的发布进一步丰富了AWS在ARM架构上的深度学习支持,为用户提供了更多选择,特别是在成本优化方面。随着Graviton处理器生态的不断完善,这类优化容器将会成为越来越多用户的选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00