Frequency_Aug_VAE_MoESR 项目使用教程
1. 项目介绍
Frequency_Aug_VAE_MoESR 是一个基于潜变量扩散的图像超分辨率(SR)项目。该项目通过使用混合专家(MoE)和频率增强变分自编码器(VAE)解码器,显著提升了图像超分辨率的性能。项目的主要创新点包括:
- 频率增强VAE(FA_VAE):通过增强频率组件,缓解了潜在空间压缩导致的重建失真问题。
- 采样空间混合专家(SS-MoE):在不显著增加推理成本的情况下,提高了模型的容量。
该项目不仅适用于图像超分辨率,还可应用于图像重建和文本到图像生成。
2. 项目快速启动
2.1 环境准备
首先,克隆项目仓库并进入项目目录:
git clone https://github.com/tencent-ailab/Frequency_Aug_VAE_MoESR.git
cd Frequency_Aug_VAE_MoESR
2.2 创建并激活 Conda 环境
使用项目提供的 environment.yaml
文件创建并激活 Conda 环境:
conda env create --file environment.yaml
conda activate moe_sr
2.3 安装依赖
安装可选的 xformers
包:
conda install xformers -c xformers/label/dev
安装 taming
包:
pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
2.4 运行推理
2.4.1 8x 超分辨率
下载 model_stage[x].ckpt
和 vq-f4/fa_vae.pth
到 sr_8x_inf/models
目录,然后运行以下命令:
cd sr_8x_inf
sh inf_moe_8x.sh
2.4.2 文本到图像生成
下载 SD1.5 基础模型(如 realv
)和 kl-f8/fa_vae.pth
,并设置路径在 get_latent.py
和 decode.py
中,然后运行以下命令:
cd vae_txt2img_inf
# 获取扩散潜变量
python3 get_latent.py
# 解码生成图像
python3 decode.py
3. 应用案例和最佳实践
3.1 图像超分辨率
在图像超分辨率任务中,Frequency_Aug_VAE_MoESR 通过增强频率组件,显著提高了图像的清晰度和细节还原能力。特别是在处理低分辨率图像时,效果尤为明显。
3.2 图像重建
在图像重建任务中,项目通过频率增强解码器,有效减少了重建图像中的失真,特别是在人脸等细节丰富的区域,效果显著。
3.3 文本到图像生成
在文本到图像生成任务中,项目通过替换原始解码器为频率增强解码器,提高了生成图像的质量,特别是在文本描述复杂的情况下,生成的图像更加符合描述。
4. 典型生态项目
4.1 Stable Diffusion
Stable Diffusion 是一个基于扩散模型的图像生成项目,Frequency_Aug_VAE_MoESR 可以与其结合,进一步提升生成图像的质量。
4.2 BasicSR
BasicSR 是一个专注于图像超分辨率的开源项目,Frequency_Aug_VAE_MoESR 可以作为其扩展模块,增强其在高频细节上的表现。
4.3 Taming Transformers
Taming Transformers 是一个基于变分自编码器的图像生成项目,Frequency_Aug_VAE_MoESR 可以与其结合,提升图像生成的质量和细节还原能力。
通过以上模块的介绍和实践,您可以快速上手并深入了解 Frequency_Aug_VAE_MoESR 项目,并将其应用于各种图像处理任务中。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0361Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









