【亲测免费】 使用PoseNet Python实现高效人体姿态识别
在计算机视觉领域,对人体姿态的准确识别有着广泛的应用。而谷歌的TensorFlow.js库中的Posenet模型是这一领域的佼佼者。现在,我们很高兴向您推荐一个纯Python实现的Posenet模型——Posenet Python。这个项目不仅提供了多姿态识别功能,还优化了性能,使其在GPU上运行时能够达到令人满意的实时效果。
项目介绍
Posenet Python是一个基于Python的、无需依赖JavaScript的多姿态检测库。它通过移植和优化Google的TensorFlow.js Posenet模型,实现了在本地环境中的快速运行。该库提供了一个简单的命令行接口,包括三个演示应用程序:图像演示、基准测试和摄像头演示,帮助您轻松地进行人体姿态识别。
项目技术分析
Posenet Python采用了高效的numpy和scipy库,对关键函数进行了矢量化处理,提高了执行速度。在GTX 1080 Ti或更高配置的显卡上,基础MobileNet模型可以实现每秒200-300帧的吞吐量。尽管多姿态后处理降低了这一速度,但经过优化后的"快"后处理代码仍能保持90-110帧的速率。
此外,项目作者指出,更进一步的优化(如Cython或纯C++的移植)将带来更好的性能提升。
应用场景
无论是在健身监测、动作捕捉、游戏互动还是远程医疗等领域,Posenet Python都能发挥重要作用。例如,您可以利用摄像头实时追踪运动者的关节位置,为用户提供实时的姿势纠正反馈;或者在教育场景中,用于教授瑜伽、舞蹈等课程,精确展示每个动作的关键点。
项目特点
- 纯Python实现:无需掌握复杂的JavaScript,让Python开发者也能方便地利用Posenet模型。
- 高性能:在高性能GPU上运行,可实现接近实时的速度。
- 简单易用:提供三种演示应用,方便开发者了解和测试模型性能。
- 灵活性:支持指定模型的深度倍增器,适应不同的精度和速度需求。
要开始使用,只需安装合适的Python环境,包括Tensorflow-GPU、scipy、pyyaml以及opencv-python,并按照readme指示运行脚本即可。
总的来说,无论是对于研究开发还是实际应用,Posenet Python都是一个值得尝试的优秀工具。不妨现在就加入,探索更多可能!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00