V2V-PoseNet-pytorch:高效准确的3D手部和人体姿态估计工具
2024-09-26 16:00:10作者:廉皓灿Ida
项目介绍
V2V-PoseNet-pytorch 是一个基于PyTorch实现的V2V-PoseNet模型,用于从单张深度图进行3D手部和人体姿态估计。该项目主要参考了原作者的torch7实现,并在此基础上进行了优化和改进。V2V-PoseNet通过体素到体素的预测网络,能够准确地从单张深度图中提取出3D手部和人体的姿态信息。
项目技术分析
核心技术
- V2V-PoseNet模型:该模型通过体素化的方式处理深度图,利用卷积神经网络(CNN)进行体素到体素的预测,从而实现高精度的3D姿态估计。
- Integral Pose Loss:项目还实现了Integral Pose Loss,进一步提升了模型的精度,使得在MSRA手部姿态数据集上的平均误差降低到约10mm。
技术细节
- PyTorch实现:项目使用PyTorch 0.4.1或1.0版本进行开发,确保了代码的可移植性和易用性。
- 数据处理:项目提供了MSRA手部姿态数据集的实验演示,用户可以轻松配置数据路径并进行训练和测试。
- 性能优化:针对PyTorch 0.4.1版本的cudnn问题,项目提供了详细的解决方案,确保模型在不同环境下的稳定性和性能。
项目及技术应用场景
应用场景
- 人机交互:在虚拟现实(VR)和增强现实(AR)中,准确的手部和人体姿态估计是实现自然交互的关键。
- 医疗康复:通过3D姿态估计,可以实时监测患者的运动状态,为康复训练提供数据支持。
- 运动分析:在体育训练和运动分析中,3D姿态估计可以帮助教练和运动员更好地理解动作细节,提升训练效果。
技术优势
- 高精度:V2V-PoseNet在多个数据集上表现出色,尤其是在MSRA手部姿态数据集上,平均误差仅为10mm。
- 易用性:项目提供了详细的文档和示例代码,用户可以快速上手并进行定制化开发。
- 可扩展性:基于PyTorch的实现使得项目易于扩展和优化,用户可以根据需求进行二次开发。
项目特点
主要特点
- 高效性:V2V-PoseNet通过体素化的方式处理深度图,大大提高了姿态估计的效率。
- 准确性:项目在多个数据集上进行了验证,结果表明其具有极高的准确性。
- 灵活性:基于PyTorch的实现使得项目具有良好的灵活性,用户可以根据需求进行定制化开发。
未来展望
- 多模态融合:未来可以考虑将深度图与其他传感器数据(如RGB图像、IMU数据)进行融合,进一步提升姿态估计的精度。
- 实时应用:通过优化模型结构和推理速度,未来可以将V2V-PoseNet应用于实时场景,如实时VR/AR交互。
结语
V2V-PoseNet-pytorch 是一个功能强大且易于使用的3D姿态估计工具,适用于多种应用场景。无论你是研究人员、开发者还是爱好者,都可以通过该项目快速实现高精度的3D姿态估计。快来尝试吧,开启你的3D姿态估计之旅!
项目地址:V2V-PoseNet-pytorch
参考文献:
- Moon, Gyeongsik, Ju Yong Chang, and Kyoung Mu Lee. "V2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map." CVPR 2018. [arXiv]
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
731
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
198
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460