开源项目教程:构建微服务架构的食品配送应用程序
项目介绍
此开源项目名为“Food Delivery WebApp”,是由Shahriar Sajeeb发起的一个基于微服务架构的全面食品配送网络应用程序。它旨在通过分离不同功能(如管理员、用户、餐馆老板和送货员的应用)来创建一个综合系统。本项目利用了现代技术栈,包括Nest.js作为后端框架,GraphQL作为微服务间通信的网关,Docker进行容器化管理,Prisma作为ORM与数据库交互,并计划在AWS ECS上部署,以及更多其他AWS服务。前端则采用Next.js以实现优化的速度和SEO性能。
项目快速启动
环境准备
确保您已安装以下软件:
- Node.js
- npm 或 yarn
- Docker(可选,如果要使用容器化开发)
克隆项目
首先,从GitHub克隆项目到本地:
git clone https://github.com/shahriarsajeeb/Food-Delivery-WebApp.git
cd Food-Delivery-WebApp
安装依赖
使用npm或yarn安装项目所需的所有依赖:
npm install # 或者使用 yarn install
运行应用程序
项目中可能包含了多个服务,每个服务有自己的启动命令。通常,这会涉及到启动Nest.js服务。假设有一个主服务入口点,在项目根目录下运行指定的服务命令,例如:
nest start # 假设这是启动主要后端服务的命令
对于前端部分,如果有单独的前端服务,则使用对应的命令启动,比如:
npm run dev # 在前端目录下,如果存在这样的脚本
请注意,具体命令可能因项目配置而异,务必参照项目内的package.json文件或项目的说明文档。
数据库设置
确保配置了正确的数据库连接信息,并且数据库已经准备就绪。对于Prisma,你可能还需要执行迁移以创建表结构。
应用案例和最佳实践
在实施这个项目时,关注微服务之间的清晰通信是关键。利用GraphQL可以有效减少API调用次数,提高效率。此外,Docker容器化不仅简化了环境一致性问题,还便于部署和扩展。遵循模块化设计原则,每个服务应尽可能独立,仅通过API接口与其他服务互动,保持高度解耦。
典型生态项目
虽然“Food Delivery WebApp”本身就是一个典型的案例,展示了微服务架构在食品配送行业中的应用,但开发者还可以探索结合其他生态项目增强其能力,如使用Traefik进行智能路由,Kubernetes进行自动扩展和管理,以及使用OpenTelemetry进行服务监控,以确保系统的高可用性和性能监控。
此教程提供了一个基础的起点,深入学习项目还需参考项目内的详细文档和注释。参与贡献和改进,让这一开源工具更加完善和实用。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00