ntopng项目中的周期性流量监控功能增强
在ntopng网络流量监控系统中,周期性流量检测是一项重要的功能,它能够帮助网络管理员识别网络中定期出现的流量模式。近期,项目团队对该功能进行了一项重要改进,使得周期性流量的相关信息能够更直观地展示给用户。
功能背景
周期性流量检测功能主要用于识别网络中那些按照固定时间间隔重复出现的流量模式。这类流量可能是正常的周期性业务流量(如备份作业、定时同步等),也可能是异常流量(如恶意软件的定期通信)。当系统检测到周期性流量时,会触发"Periodic Flow"(周期性流量)告警。
改进内容
本次功能增强主要针对周期性流量信息的展示方式进行了优化:
-
周期性信息可视化:在流量详情页面,现在会明确显示检测到的周期性流量的具体时间间隔(如每分钟、每5分钟等)
-
数据库存储优化:将周期性信息持久化存储到数据库中,使得历史流量分析时也能获取这些关键数据
-
信息列展示:在流量列表的信息列中新增了周期性间隔的显示,用户可以一目了然地看到哪些流量具有周期性特征
技术实现
从技术角度看,这一改进涉及以下几个方面的修改:
-
流量分析引擎:增强了流量分析引擎,使其不仅能够检测周期性流量,还能准确计算和记录周期时间间隔
-
数据库模式:扩展了数据库模式,新增了存储周期性信息的字段
-
用户界面:更新了用户界面组件,确保周期性信息能够清晰展示
应用价值
这一改进为网络管理员带来了显著的操作便利:
-
快速诊断:管理员现在可以立即看到流量的周期性特征,无需深入分析原始数据
-
历史分析:由于信息存储在数据库中,可以对历史流量进行周期性分析,识别长期模式
-
告警关联:将周期性信息与告警系统关联,可以设置更精确的告警阈值和过滤条件
总结
ntopng项目对周期性流量监控功能的这一增强,体现了项目团队对用户体验的持续关注。通过将技术细节以更直观的方式呈现给用户,大大提升了网络流量监控的效率和易用性。这一改进不仅适用于高级网络管理员,也使初级用户能够更容易地理解和利用周期性流量信息进行网络分析。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00