ntopng项目中的周期性流量监控功能增强
在ntopng网络流量监控系统中,周期性流量检测是一项重要的功能,它能够帮助网络管理员识别网络中定期出现的流量模式。近期,项目团队对该功能进行了一项重要改进,使得周期性流量的相关信息能够更直观地展示给用户。
功能背景
周期性流量检测功能主要用于识别网络中那些按照固定时间间隔重复出现的流量模式。这类流量可能是正常的周期性业务流量(如备份作业、定时同步等),也可能是异常流量(如恶意软件的定期通信)。当系统检测到周期性流量时,会触发"Periodic Flow"(周期性流量)告警。
改进内容
本次功能增强主要针对周期性流量信息的展示方式进行了优化:
-
周期性信息可视化:在流量详情页面,现在会明确显示检测到的周期性流量的具体时间间隔(如每分钟、每5分钟等)
-
数据库存储优化:将周期性信息持久化存储到数据库中,使得历史流量分析时也能获取这些关键数据
-
信息列展示:在流量列表的信息列中新增了周期性间隔的显示,用户可以一目了然地看到哪些流量具有周期性特征
技术实现
从技术角度看,这一改进涉及以下几个方面的修改:
-
流量分析引擎:增强了流量分析引擎,使其不仅能够检测周期性流量,还能准确计算和记录周期时间间隔
-
数据库模式:扩展了数据库模式,新增了存储周期性信息的字段
-
用户界面:更新了用户界面组件,确保周期性信息能够清晰展示
应用价值
这一改进为网络管理员带来了显著的操作便利:
-
快速诊断:管理员现在可以立即看到流量的周期性特征,无需深入分析原始数据
-
历史分析:由于信息存储在数据库中,可以对历史流量进行周期性分析,识别长期模式
-
告警关联:将周期性信息与告警系统关联,可以设置更精确的告警阈值和过滤条件
总结
ntopng项目对周期性流量监控功能的这一增强,体现了项目团队对用户体验的持续关注。通过将技术细节以更直观的方式呈现给用户,大大提升了网络流量监控的效率和易用性。这一改进不仅适用于高级网络管理员,也使初级用户能够更容易地理解和利用周期性流量信息进行网络分析。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++036Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0283Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









