ntopng项目中的周期性流量监控功能增强
在ntopng网络流量监控系统中,周期性流量检测是一项重要的功能,它能够帮助网络管理员识别网络中定期出现的流量模式。近期,项目团队对该功能进行了一项重要改进,使得周期性流量的相关信息能够更直观地展示给用户。
功能背景
周期性流量检测功能主要用于识别网络中那些按照固定时间间隔重复出现的流量模式。这类流量可能是正常的周期性业务流量(如备份作业、定时同步等),也可能是异常流量(如恶意软件的定期通信)。当系统检测到周期性流量时,会触发"Periodic Flow"(周期性流量)告警。
改进内容
本次功能增强主要针对周期性流量信息的展示方式进行了优化:
-
周期性信息可视化:在流量详情页面,现在会明确显示检测到的周期性流量的具体时间间隔(如每分钟、每5分钟等)
-
数据库存储优化:将周期性信息持久化存储到数据库中,使得历史流量分析时也能获取这些关键数据
-
信息列展示:在流量列表的信息列中新增了周期性间隔的显示,用户可以一目了然地看到哪些流量具有周期性特征
技术实现
从技术角度看,这一改进涉及以下几个方面的修改:
-
流量分析引擎:增强了流量分析引擎,使其不仅能够检测周期性流量,还能准确计算和记录周期时间间隔
-
数据库模式:扩展了数据库模式,新增了存储周期性信息的字段
-
用户界面:更新了用户界面组件,确保周期性信息能够清晰展示
应用价值
这一改进为网络管理员带来了显著的操作便利:
-
快速诊断:管理员现在可以立即看到流量的周期性特征,无需深入分析原始数据
-
历史分析:由于信息存储在数据库中,可以对历史流量进行周期性分析,识别长期模式
-
告警关联:将周期性信息与告警系统关联,可以设置更精确的告警阈值和过滤条件
总结
ntopng项目对周期性流量监控功能的这一增强,体现了项目团队对用户体验的持续关注。通过将技术细节以更直观的方式呈现给用户,大大提升了网络流量监控的效率和易用性。这一改进不仅适用于高级网络管理员,也使初级用户能够更容易地理解和利用周期性流量信息进行网络分析。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00