dstack项目0.19.4版本发布:服务限速与TensorRT-LLM支持
dstack是一个开源的机器学习工作流编排平台,它帮助研究人员和工程师轻松地在云环境中运行和管理机器学习任务。该项目提供了从开发到部署的全套解决方案,特别适合需要大规模计算资源的深度学习场景。
服务限速功能增强
本次0.19.4版本最显著的改进是新增了服务限速功能。在之前的版本中,dstack已经支持将用户应用作为服务部署并通过网关访问,但缺乏对请求流量的精细控制。新版本通过引入rate_limits配置项,允许用户针对不同URL前缀设置不同的请求速率限制。
这项功能特别适合以下场景:
- 保护关键API端点不被过度调用
- 防止突发流量导致服务不可用
- 为不同优先级的API路径分配不同的带宽资源
配置示例展示了如何为认证API设置严格的1请求/秒限制,同时为其他API保留4请求/秒的基础速率和9个请求的突发容量。这种细粒度的控制使得生产环境中的服务部署更加可靠和安全。
TensorRT-LLM与Llama 4支持
在模型部署方面,新版本增加了对TensorRT-LLM的支持。TensorRT-LLM是NVIDIA推出的高性能推理框架,能够显著提升大语言模型的推理速度。dstack现在提供了部署DeepSeek R1及其蒸馏版本的完整示例,展示了如何利用TensorRT-LLM优化推理性能。
同时,项目文档中的Llama示例也更新到了最新的Llama 4 Scout模型。这些示例不仅展示了基本部署流程,还包含了针对不同硬件架构(如AMD GPU)的优化配置,为用户提供了开箱即用的参考实现。
开发体验优化
dstack团队持续改进项目的开发体验,本次版本在构建系统上做出了重大调整:
- 从传统的pip包管理器迁移到了uv(由Astral开发的新一代Python包管理器),使得依赖安装时间从70秒大幅缩短到10秒以内
- 测试环节引入了pytest-xdist支持并行测试执行
- CI/CD流水线经过优化后,构建时间从9分钟减少到4分钟
这些改进不仅提升了核心开发者的效率,也为贡献者提供了更友好的开发环境。项目文档中新增了使用uv进行开发的详细指南,降低了新贡献者的入门门槛。
其他重要改进
- 日志存储系统修复了CloudWatchLogStorage在处理稀疏日志时的问题
- 增强了用户名验证机制,提高了系统安全性
- 改进了运行状态检测的重试策略,采用指数退避算法
- 解决了dstack attach命令的分离问题
- 修复了Nginx上游名称冲突的问题
这些改进共同提升了dstack平台的稳定性、安全性和用户体验,使其更适合生产环境部署和大规模机器学习工作流管理。
对于机器学习工程师和研究人员来说,0.19.4版本提供了更强大的服务部署能力和更高效的开发体验,特别是在大语言模型部署和API服务管理方面有了显著进步。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00