dstack项目0.19.4版本发布:服务限速与TensorRT-LLM支持
dstack是一个开源的机器学习工作流编排平台,它帮助研究人员和工程师轻松地在云环境中运行和管理机器学习任务。该项目提供了从开发到部署的全套解决方案,特别适合需要大规模计算资源的深度学习场景。
服务限速功能增强
本次0.19.4版本最显著的改进是新增了服务限速功能。在之前的版本中,dstack已经支持将用户应用作为服务部署并通过网关访问,但缺乏对请求流量的精细控制。新版本通过引入rate_limits配置项,允许用户针对不同URL前缀设置不同的请求速率限制。
这项功能特别适合以下场景:
- 保护关键API端点不被过度调用
- 防止突发流量导致服务不可用
- 为不同优先级的API路径分配不同的带宽资源
配置示例展示了如何为认证API设置严格的1请求/秒限制,同时为其他API保留4请求/秒的基础速率和9个请求的突发容量。这种细粒度的控制使得生产环境中的服务部署更加可靠和安全。
TensorRT-LLM与Llama 4支持
在模型部署方面,新版本增加了对TensorRT-LLM的支持。TensorRT-LLM是NVIDIA推出的高性能推理框架,能够显著提升大语言模型的推理速度。dstack现在提供了部署DeepSeek R1及其蒸馏版本的完整示例,展示了如何利用TensorRT-LLM优化推理性能。
同时,项目文档中的Llama示例也更新到了最新的Llama 4 Scout模型。这些示例不仅展示了基本部署流程,还包含了针对不同硬件架构(如AMD GPU)的优化配置,为用户提供了开箱即用的参考实现。
开发体验优化
dstack团队持续改进项目的开发体验,本次版本在构建系统上做出了重大调整:
- 从传统的pip包管理器迁移到了uv(由Astral开发的新一代Python包管理器),使得依赖安装时间从70秒大幅缩短到10秒以内
- 测试环节引入了pytest-xdist支持并行测试执行
- CI/CD流水线经过优化后,构建时间从9分钟减少到4分钟
这些改进不仅提升了核心开发者的效率,也为贡献者提供了更友好的开发环境。项目文档中新增了使用uv进行开发的详细指南,降低了新贡献者的入门门槛。
其他重要改进
- 日志存储系统修复了CloudWatchLogStorage在处理稀疏日志时的问题
- 增强了用户名验证机制,提高了系统安全性
- 改进了运行状态检测的重试策略,采用指数退避算法
- 解决了dstack attach命令的分离问题
- 修复了Nginx上游名称冲突的问题
这些改进共同提升了dstack平台的稳定性、安全性和用户体验,使其更适合生产环境部署和大规模机器学习工作流管理。
对于机器学习工程师和研究人员来说,0.19.4版本提供了更强大的服务部署能力和更高效的开发体验,特别是在大语言模型部署和API服务管理方面有了显著进步。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0377- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









