dstack项目0.19.4版本发布:服务限速与TensorRT-LLM支持
dstack是一个开源的机器学习工作流编排平台,它帮助研究人员和工程师轻松地在云环境中运行和管理机器学习任务。该项目提供了从开发到部署的全套解决方案,特别适合需要大规模计算资源的深度学习场景。
服务限速功能增强
本次0.19.4版本最显著的改进是新增了服务限速功能。在之前的版本中,dstack已经支持将用户应用作为服务部署并通过网关访问,但缺乏对请求流量的精细控制。新版本通过引入rate_limits配置项,允许用户针对不同URL前缀设置不同的请求速率限制。
这项功能特别适合以下场景:
- 保护关键API端点不被过度调用
- 防止突发流量导致服务不可用
- 为不同优先级的API路径分配不同的带宽资源
配置示例展示了如何为认证API设置严格的1请求/秒限制,同时为其他API保留4请求/秒的基础速率和9个请求的突发容量。这种细粒度的控制使得生产环境中的服务部署更加可靠和安全。
TensorRT-LLM与Llama 4支持
在模型部署方面,新版本增加了对TensorRT-LLM的支持。TensorRT-LLM是NVIDIA推出的高性能推理框架,能够显著提升大语言模型的推理速度。dstack现在提供了部署DeepSeek R1及其蒸馏版本的完整示例,展示了如何利用TensorRT-LLM优化推理性能。
同时,项目文档中的Llama示例也更新到了最新的Llama 4 Scout模型。这些示例不仅展示了基本部署流程,还包含了针对不同硬件架构(如AMD GPU)的优化配置,为用户提供了开箱即用的参考实现。
开发体验优化
dstack团队持续改进项目的开发体验,本次版本在构建系统上做出了重大调整:
- 从传统的pip包管理器迁移到了uv(由Astral开发的新一代Python包管理器),使得依赖安装时间从70秒大幅缩短到10秒以内
- 测试环节引入了pytest-xdist支持并行测试执行
- CI/CD流水线经过优化后,构建时间从9分钟减少到4分钟
这些改进不仅提升了核心开发者的效率,也为贡献者提供了更友好的开发环境。项目文档中新增了使用uv进行开发的详细指南,降低了新贡献者的入门门槛。
其他重要改进
- 日志存储系统修复了CloudWatchLogStorage在处理稀疏日志时的问题
- 增强了用户名验证机制,提高了系统安全性
- 改进了运行状态检测的重试策略,采用指数退避算法
- 解决了dstack attach命令的分离问题
- 修复了Nginx上游名称冲突的问题
这些改进共同提升了dstack平台的稳定性、安全性和用户体验,使其更适合生产环境部署和大规模机器学习工作流管理。
对于机器学习工程师和研究人员来说,0.19.4版本提供了更强大的服务部署能力和更高效的开发体验,特别是在大语言模型部署和API服务管理方面有了显著进步。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00