VQ-BeT项目安装与配置指南
2025-04-17 06:36:03作者:魏侃纯Zoe
1. 项目基础介绍
VQ-BeT(Behavior Generation with Latent Actions)是一个开源项目,旨在通过潜在行为生成技术来生成行为。该项目基于深度学习,使用Python编程语言实现。
2. 项目使用的关键技术和框架
- 编程语言:Python
- 关键技术:
- 向量量化变分自编码器(VQ-VAE):用于学习动作数据的潜在表示。
- 行为生成模型:用于根据潜在表示生成具体的行为。
- 框架和库:
- PyTorch:深度学习框架,用于模型的定义和训练。
- MuJoCo:物理模拟引擎,用于模拟机器人等环境。
- D4RL:用于强化学习的_dataset库。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统中已安装以下软件:
- Python(建议版本3.7或3.9)
- Conda(用于创建Python虚拟环境)
- Git(用于克隆项目代码)
详细安装步骤
步骤1:创建和激活Conda环境
打开终端或命令提示符,执行以下命令来创建一个名为vq-bet
的Conda环境,并激活它:
conda create -n vq-bet python=3.9
conda activate vq-bet
步骤2:克隆项目代码
在激活的环境中,使用Git克隆项目代码:
git clone https://github.com/jayLEE0301/vq_bet_official.git
步骤3:安装依赖
进入项目目录,安装所需的Python包:
cd vq_bet_official
pip install -r requirements.txt
步骤4:安装MuJoCo和D4RL
在项目目录中安装MuJoCo和D4RL:
cd $PROJ_ROOT
git clone https://github.com/Farama-Foundation/d4rl.git
cd $PROJ_ROOT/d4rl
pip install -e .
如果需要安装UR3环境,执行以下命令:
cd $PROJ_ROOT/vq_bet_official/envs/ur3
pip install -e .
步骤5:配置环境变量
在examples/configs/env_vars/env_vars.yaml
文件中,填写数据集路径、保存路径和WANDB实体:
env_vars:
# 填写以下内容
dataset_path: PATH_TO_YOUR_[env_name]_DATASET
save_path: YOUR_SAVE_PATH
wandb_entity: YOUR_WANDB_ENTITY
在examples/configs/env_vars/env_vars.yaml
文件的datasets:
部分添加以下行,包含你的环境名称:
[env_name]:
${env_vars.dataset_path}/[env_name]
步骤6:开始训练
按照项目的Usage
部分,进行VQ-VAE预训练和行为生成模型训练。
此指南为VQ-BeT项目的安装和配置提供了基本步骤,具体的使用和训练细节请参考项目的官方文档。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.26 K

暂无简介
Dart
526
116

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
582

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
42
0