VQ-BeT项目安装与配置指南
2025-04-17 23:06:24作者:魏侃纯Zoe
1. 项目基础介绍
VQ-BeT(Behavior Generation with Latent Actions)是一个开源项目,旨在通过潜在行为生成技术来生成行为。该项目基于深度学习,使用Python编程语言实现。
2. 项目使用的关键技术和框架
- 编程语言:Python
- 关键技术:
- 向量量化变分自编码器(VQ-VAE):用于学习动作数据的潜在表示。
- 行为生成模型:用于根据潜在表示生成具体的行为。
- 框架和库:
- PyTorch:深度学习框架,用于模型的定义和训练。
- MuJoCo:物理模拟引擎,用于模拟机器人等环境。
- D4RL:用于强化学习的_dataset库。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统中已安装以下软件:
- Python(建议版本3.7或3.9)
- Conda(用于创建Python虚拟环境)
- Git(用于克隆项目代码)
详细安装步骤
步骤1:创建和激活Conda环境
打开终端或命令提示符,执行以下命令来创建一个名为vq-bet的Conda环境,并激活它:
conda create -n vq-bet python=3.9
conda activate vq-bet
步骤2:克隆项目代码
在激活的环境中,使用Git克隆项目代码:
git clone https://github.com/jayLEE0301/vq_bet_official.git
步骤3:安装依赖
进入项目目录,安装所需的Python包:
cd vq_bet_official
pip install -r requirements.txt
步骤4:安装MuJoCo和D4RL
在项目目录中安装MuJoCo和D4RL:
cd $PROJ_ROOT
git clone https://github.com/Farama-Foundation/d4rl.git
cd $PROJ_ROOT/d4rl
pip install -e .
如果需要安装UR3环境,执行以下命令:
cd $PROJ_ROOT/vq_bet_official/envs/ur3
pip install -e .
步骤5:配置环境变量
在examples/configs/env_vars/env_vars.yaml文件中,填写数据集路径、保存路径和WANDB实体:
env_vars:
# 填写以下内容
dataset_path: PATH_TO_YOUR_[env_name]_DATASET
save_path: YOUR_SAVE_PATH
wandb_entity: YOUR_WANDB_ENTITY
在examples/configs/env_vars/env_vars.yaml文件的datasets:部分添加以下行,包含你的环境名称:
[env_name]:
${env_vars.dataset_path}/[env_name]
步骤6:开始训练
按照项目的Usage部分,进行VQ-VAE预训练和行为生成模型训练。
此指南为VQ-BeT项目的安装和配置提供了基本步骤,具体的使用和训练细节请参考项目的官方文档。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328