VQ-BeT项目安装与配置指南
2025-04-17 23:06:24作者:魏侃纯Zoe
1. 项目基础介绍
VQ-BeT(Behavior Generation with Latent Actions)是一个开源项目,旨在通过潜在行为生成技术来生成行为。该项目基于深度学习,使用Python编程语言实现。
2. 项目使用的关键技术和框架
- 编程语言:Python
- 关键技术:
- 向量量化变分自编码器(VQ-VAE):用于学习动作数据的潜在表示。
- 行为生成模型:用于根据潜在表示生成具体的行为。
- 框架和库:
- PyTorch:深度学习框架,用于模型的定义和训练。
- MuJoCo:物理模拟引擎,用于模拟机器人等环境。
- D4RL:用于强化学习的_dataset库。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统中已安装以下软件:
- Python(建议版本3.7或3.9)
- Conda(用于创建Python虚拟环境)
- Git(用于克隆项目代码)
详细安装步骤
步骤1:创建和激活Conda环境
打开终端或命令提示符,执行以下命令来创建一个名为vq-bet的Conda环境,并激活它:
conda create -n vq-bet python=3.9
conda activate vq-bet
步骤2:克隆项目代码
在激活的环境中,使用Git克隆项目代码:
git clone https://github.com/jayLEE0301/vq_bet_official.git
步骤3:安装依赖
进入项目目录,安装所需的Python包:
cd vq_bet_official
pip install -r requirements.txt
步骤4:安装MuJoCo和D4RL
在项目目录中安装MuJoCo和D4RL:
cd $PROJ_ROOT
git clone https://github.com/Farama-Foundation/d4rl.git
cd $PROJ_ROOT/d4rl
pip install -e .
如果需要安装UR3环境,执行以下命令:
cd $PROJ_ROOT/vq_bet_official/envs/ur3
pip install -e .
步骤5:配置环境变量
在examples/configs/env_vars/env_vars.yaml文件中,填写数据集路径、保存路径和WANDB实体:
env_vars:
# 填写以下内容
dataset_path: PATH_TO_YOUR_[env_name]_DATASET
save_path: YOUR_SAVE_PATH
wandb_entity: YOUR_WANDB_ENTITY
在examples/configs/env_vars/env_vars.yaml文件的datasets:部分添加以下行,包含你的环境名称:
[env_name]:
${env_vars.dataset_path}/[env_name]
步骤6:开始训练
按照项目的Usage部分,进行VQ-VAE预训练和行为生成模型训练。
此指南为VQ-BeT项目的安装和配置提供了基本步骤,具体的使用和训练细节请参考项目的官方文档。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
422
3.25 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869