Apache AGE中实现BFS递归查询的技术解析
2025-06-30 14:18:42作者:卓艾滢Kingsley
在Apache AGE图数据库的实际应用中,广度优先搜索(BFS)是一种常见的图遍历算法。本文将深入探讨如何在PostgreSQL环境中利用Apache AGE实现高效的BFS递归查询。
环境准备与数据建模
首先需要确保环境配置正确,包括PostgreSQL 16.3和Apache AGE 1.5.0的安装。我们创建一个简单的社交网络图模型作为示例:
- 创建图空间:
SELECT * FROM ag_catalog.create_graph('social_network'); - 添加节点:创建5个带有extid和name属性的节点
- 建立关系:在这些节点间建立双向的CONNECTED_TO关系
这种模型可以很好地模拟社交网络中的用户连接关系,为后续的BFS遍历提供数据基础。
BFS递归查询实现原理
广度优先搜索的核心思想是按层次遍历图结构,从起始节点开始,先访问所有直接相连的节点,再访问这些节点的邻居,依此类推。在Apache AGE中,我们可以通过递归公用表表达式(WITH RECURSIVE)来实现这一算法。
关键实现要点
- 初始查询部分:确定BFS的起始节点,这里我们选择extid为1的节点作为起点
- 递归部分:通过JOIN连接不断扩展搜索范围
- 访问控制:使用数组记录已访问节点,避免重复访问和循环
完整实现方案
以下是经过优化的BFS递归查询实现代码:
WITH RECURSIVE bfs AS (
-- 基础查询:选择起始节点
SELECT
id,
extid,
1 AS level,
ARRAY[id] AS visited
FROM cypher('social_network', $$
MATCH (n:User {extid: 1})
RETURN id(n) AS id, n.extid AS extid
$$) AS (id agtype, extid agtype)
UNION ALL
-- 递归部分:扩展搜索到下一层节点
SELECT
e.end_id AS id,
e.end_extid AS extid,
p.level + 1 AS level,
p.visited || e.end_id AS visited
FROM bfs AS p
JOIN cypher('social_network', $$
MATCH (n:User)-[r:CONNECTED_TO]->(m:User)
RETURN id(n) AS start_id, id(m) AS end_id, m.extid AS end_extid
$$) AS e(start_id agtype, end_id agtype, end_extid agtype)
ON e.start_id = p.id
WHERE e.end_id <> ALL(p.visited) -- 确保不重复访问
SELECT * FROM bfs;
技术细节解析
- 递归控制:通过WITH RECURSIVE定义递归查询,PostgreSQL会自动处理递归终止条件
- 层级记录:level字段记录每个节点距离起始节点的层级数
- 访问跟踪:visited数组动态记录已访问节点路径,有效防止循环
- 性能考虑:JOIN操作确保只扩展当前层的节点到下一层
查询结果分析
执行上述查询后,我们将获得按层级组织的节点列表:
id | extid | level | visited
-----------------+-------+-------+---------------------------------------------------
844424930131969 | 1 | 1 | {844424930131969}
844424930131970 | 2 | 2 | {844424930131969,844424930131970}
844424930131971 | 3 | 2 | {844424930131969,844424930131971}
844424930131973 | 5 | 2 | {844424930131969,844424930131973}
844424930131972 | 4 | 3 | {844424930131969,844424930131970,844424930131972}
结果清晰地展示了从起始节点(extid=1)开始的BFS遍历顺序,包含每个节点的层级信息和访问路径。
实际应用建议
- 大数据集优化:对于大型图数据,考虑添加索引提高查询性能
- 深度控制:可以通过添加WHERE条件限制搜索深度
- 路径分析:visited数组可以扩展为完整路径记录,用于后续分析
- 权重考虑:在有权重的情况下,可以修改为最佳优先搜索
通过这种实现方式,开发者可以在Apache AGE中高效地执行复杂的图遍历操作,为社交网络分析、推荐系统等应用场景提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134