Apache AGE中实现BFS递归查询的技术解析
2025-06-30 10:18:28作者:卓艾滢Kingsley
在Apache AGE图数据库的实际应用中,广度优先搜索(BFS)是一种常见的图遍历算法。本文将深入探讨如何在PostgreSQL环境中利用Apache AGE实现高效的BFS递归查询。
环境准备与数据建模
首先需要确保环境配置正确,包括PostgreSQL 16.3和Apache AGE 1.5.0的安装。我们创建一个简单的社交网络图模型作为示例:
- 创建图空间:
SELECT * FROM ag_catalog.create_graph('social_network'); - 添加节点:创建5个带有extid和name属性的节点
- 建立关系:在这些节点间建立双向的CONNECTED_TO关系
这种模型可以很好地模拟社交网络中的用户连接关系,为后续的BFS遍历提供数据基础。
BFS递归查询实现原理
广度优先搜索的核心思想是按层次遍历图结构,从起始节点开始,先访问所有直接相连的节点,再访问这些节点的邻居,依此类推。在Apache AGE中,我们可以通过递归公用表表达式(WITH RECURSIVE)来实现这一算法。
关键实现要点
- 初始查询部分:确定BFS的起始节点,这里我们选择extid为1的节点作为起点
- 递归部分:通过JOIN连接不断扩展搜索范围
- 访问控制:使用数组记录已访问节点,避免重复访问和循环
完整实现方案
以下是经过优化的BFS递归查询实现代码:
WITH RECURSIVE bfs AS (
-- 基础查询:选择起始节点
SELECT
id,
extid,
1 AS level,
ARRAY[id] AS visited
FROM cypher('social_network', $$
MATCH (n:User {extid: 1})
RETURN id(n) AS id, n.extid AS extid
$$) AS (id agtype, extid agtype)
UNION ALL
-- 递归部分:扩展搜索到下一层节点
SELECT
e.end_id AS id,
e.end_extid AS extid,
p.level + 1 AS level,
p.visited || e.end_id AS visited
FROM bfs AS p
JOIN cypher('social_network', $$
MATCH (n:User)-[r:CONNECTED_TO]->(m:User)
RETURN id(n) AS start_id, id(m) AS end_id, m.extid AS end_extid
$$) AS e(start_id agtype, end_id agtype, end_extid agtype)
ON e.start_id = p.id
WHERE e.end_id <> ALL(p.visited) -- 确保不重复访问
SELECT * FROM bfs;
技术细节解析
- 递归控制:通过WITH RECURSIVE定义递归查询,PostgreSQL会自动处理递归终止条件
- 层级记录:level字段记录每个节点距离起始节点的层级数
- 访问跟踪:visited数组动态记录已访问节点路径,有效防止循环
- 性能考虑:JOIN操作确保只扩展当前层的节点到下一层
查询结果分析
执行上述查询后,我们将获得按层级组织的节点列表:
id | extid | level | visited
-----------------+-------+-------+---------------------------------------------------
844424930131969 | 1 | 1 | {844424930131969}
844424930131970 | 2 | 2 | {844424930131969,844424930131970}
844424930131971 | 3 | 2 | {844424930131969,844424930131971}
844424930131973 | 5 | 2 | {844424930131969,844424930131973}
844424930131972 | 4 | 3 | {844424930131969,844424930131970,844424930131972}
结果清晰地展示了从起始节点(extid=1)开始的BFS遍历顺序,包含每个节点的层级信息和访问路径。
实际应用建议
- 大数据集优化:对于大型图数据,考虑添加索引提高查询性能
- 深度控制:可以通过添加WHERE条件限制搜索深度
- 路径分析:visited数组可以扩展为完整路径记录,用于后续分析
- 权重考虑:在有权重的情况下,可以修改为最佳优先搜索
通过这种实现方式,开发者可以在Apache AGE中高效地执行复杂的图遍历操作,为社交网络分析、推荐系统等应用场景提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
308
2.71 K
仓颉编译器源码及 cjdb 调试工具。
C++
123
780
暂无简介
Dart
598
132
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
Ascend Extension for PyTorch
Python
141
170
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
759
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232