MMDeploy在Jetson平台上的运行时包构建指南
背景介绍
MMDeploy作为OpenMMLab生态中的重要部署工具,提供了将训练好的深度学习模型转换为各种推理引擎格式的能力。在x86架构平台上,用户可以直接通过pip安装预编译的mmdeploy_runtime包来使用Python接口进行模型推理。然而,当我们需要在NVIDIA Jetson等ARM架构的边缘计算设备上部署模型时,会遇到预编译包不支持的问题。
问题分析
Jetson平台采用ARM架构处理器,与常见的x86架构存在显著差异。MMDeploy官方提供的预编译Python包主要针对x86_64平台,因此无法直接在Jetson设备上使用。这导致开发者无法直接通过import mmdeploy_runtime来调用部署好的模型。
解决方案
针对这一问题,我们需要在Jetson平台上自行构建mmdeploy_runtime包。以下是详细的构建步骤:
1. 环境准备
首先确保Jetson设备上已经安装好以下基础环境:
- JetPack SDK(包含CUDA、cuDNN、TensorRT等)
- Python 3.6+
- CMake 3.14+
- GCC/G++ 7+
- OpenCV(建议使用JetPack自带的版本)
2. 获取MMDeploy源代码
git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
git submodule update --init --recursive
3. 安装构建依赖
pip install -r requirements/build.txt
pip install -r requirements/runtime.txt
4. 配置构建选项
在MMDeploy根目录下创建build目录并配置CMake:
mkdir build && cd build
cmake .. \
-DMMDEPLOY_TARGET_BACKENDS="trt" \
-DMMDEPLOY_BUILD_SDK=ON \
-DMMDEPLOY_BUILD_SDK_PYTHON_API=ON \
-DMMDEPLOY_BUILD_EXAMPLES=ON \
-DCMAKE_TOOLCHAIN_FILE=../cmake/toolchains/aarch64-linux-gnu.cmake
关键参数说明:
MMDEPLOY_TARGET_BACKENDS: 指定目标后端,Jetson平台推荐使用TensorRT(trt)MMDEPLOY_BUILD_SDK_PYTHON_API: 启用Python API构建CMAKE_TOOLCHAIN_FILE: 指定ARM架构的交叉编译工具链
5. 编译与安装
make -j$(nproc)
make install
6. 构建Python包
进入tools/package_tools目录,执行构建脚本:
cd ../tools/package_tools
python build.py --platform linux-aarch64 --toolchain gcc --sdk ../../build/install/ ..
构建完成后,会在dist目录下生成适用于ARM架构的whl包,可直接通过pip安装。
使用建议
-
性能优化:在Jetson平台上,建议使用TensorRT后端以获得最佳性能。构建时可启用TensorRT的FP16或INT8量化选项。
-
内存管理:Jetson设备内存有限,建议控制同时加载的模型数量,或使用模型卸载机制。
-
版本兼容性:确保MMDeploy版本与JetPack中的CUDA、TensorRT版本兼容。
常见问题处理
-
构建失败:检查JetPack版本是否满足要求,特别是CUDA和TensorRT的版本。
-
Python导入错误:确认构建时Python版本与运行时一致,必要时重建Python虚拟环境。
-
性能问题:尝试调整TensorRT的优化参数,如工作空间大小、精度模式等。
结语
通过自行构建MMDeploy运行时包,开发者可以充分利用Jetson等ARM平台的计算能力,实现高效的模型部署。这一过程虽然需要额外的配置工作,但为边缘计算场景提供了强大的深度学习推理能力。随着MMDeploy项目的持续发展,未来有望提供更多平台的官方预编译包支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00