MMDeploy在Jetson平台上的运行时包构建指南
背景介绍
MMDeploy作为OpenMMLab生态中的重要部署工具,提供了将训练好的深度学习模型转换为各种推理引擎格式的能力。在x86架构平台上,用户可以直接通过pip安装预编译的mmdeploy_runtime包来使用Python接口进行模型推理。然而,当我们需要在NVIDIA Jetson等ARM架构的边缘计算设备上部署模型时,会遇到预编译包不支持的问题。
问题分析
Jetson平台采用ARM架构处理器,与常见的x86架构存在显著差异。MMDeploy官方提供的预编译Python包主要针对x86_64平台,因此无法直接在Jetson设备上使用。这导致开发者无法直接通过import mmdeploy_runtime来调用部署好的模型。
解决方案
针对这一问题,我们需要在Jetson平台上自行构建mmdeploy_runtime包。以下是详细的构建步骤:
1. 环境准备
首先确保Jetson设备上已经安装好以下基础环境:
- JetPack SDK(包含CUDA、cuDNN、TensorRT等)
- Python 3.6+
- CMake 3.14+
- GCC/G++ 7+
- OpenCV(建议使用JetPack自带的版本)
2. 获取MMDeploy源代码
git clone https://github.com/open-mmlab/mmdeploy.git
cd mmdeploy
git submodule update --init --recursive
3. 安装构建依赖
pip install -r requirements/build.txt
pip install -r requirements/runtime.txt
4. 配置构建选项
在MMDeploy根目录下创建build目录并配置CMake:
mkdir build && cd build
cmake .. \
-DMMDEPLOY_TARGET_BACKENDS="trt" \
-DMMDEPLOY_BUILD_SDK=ON \
-DMMDEPLOY_BUILD_SDK_PYTHON_API=ON \
-DMMDEPLOY_BUILD_EXAMPLES=ON \
-DCMAKE_TOOLCHAIN_FILE=../cmake/toolchains/aarch64-linux-gnu.cmake
关键参数说明:
MMDEPLOY_TARGET_BACKENDS: 指定目标后端,Jetson平台推荐使用TensorRT(trt)MMDEPLOY_BUILD_SDK_PYTHON_API: 启用Python API构建CMAKE_TOOLCHAIN_FILE: 指定ARM架构的交叉编译工具链
5. 编译与安装
make -j$(nproc)
make install
6. 构建Python包
进入tools/package_tools目录,执行构建脚本:
cd ../tools/package_tools
python build.py --platform linux-aarch64 --toolchain gcc --sdk ../../build/install/ ..
构建完成后,会在dist目录下生成适用于ARM架构的whl包,可直接通过pip安装。
使用建议
-
性能优化:在Jetson平台上,建议使用TensorRT后端以获得最佳性能。构建时可启用TensorRT的FP16或INT8量化选项。
-
内存管理:Jetson设备内存有限,建议控制同时加载的模型数量,或使用模型卸载机制。
-
版本兼容性:确保MMDeploy版本与JetPack中的CUDA、TensorRT版本兼容。
常见问题处理
-
构建失败:检查JetPack版本是否满足要求,特别是CUDA和TensorRT的版本。
-
Python导入错误:确认构建时Python版本与运行时一致,必要时重建Python虚拟环境。
-
性能问题:尝试调整TensorRT的优化参数,如工作空间大小、精度模式等。
结语
通过自行构建MMDeploy运行时包,开发者可以充分利用Jetson等ARM平台的计算能力,实现高效的模型部署。这一过程虽然需要额外的配置工作,但为边缘计算场景提供了强大的深度学习推理能力。随着MMDeploy项目的持续发展,未来有望提供更多平台的官方预编译包支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00