MMDeploy项目中的ONNXRuntime导出错误分析与解决方案
2025-06-27 14:57:59作者:霍妲思
问题背景
在使用MMDeploy工具将PointPillars模型导出为ONNX格式时,开发者遇到了一个典型的运行时错误。错误信息显示:"[ONNXRuntimeError] : 1 : FAIL : Node (MatMulBnFusion_Gemm) Op (Gemm) [ShapeInferenceError] First input does not have rank 2"。这个错误发生在模型转换的最后阶段,当尝试加载生成的ONNX模型进行可视化时。
错误分析
错误本质
这个错误的核心在于ONNX Runtime在执行形状推断时发现了一个不匹配的问题。具体来说:
- 操作类型:错误发生在Gemm(通用矩阵乘法)操作上
- 节点名称:MatMulBnFusion_Gemm(表明这是一个经过融合的矩阵乘法和批量归一化操作)
- 具体问题:该操作的第一个输入张量的秩(rank)不是2,而Gemm操作要求输入必须是二维矩阵
深层原因
这种错误通常源于以下几个方面:
- ONNX操作集版本不兼容:PointPillars模型使用的某些操作可能需要特定版本的ONNX操作集支持
- ONNX Runtime版本问题:不同版本的ONNX Runtime对操作的支持程度和优化策略有所不同
- 模型转换过程中的优化问题:在PyTorch到ONNX的转换过程中,某些优化可能导致张量形状不符合预期
解决方案
版本匹配
经过验证,以下ONNX Runtime版本可以解决此问题:
- ONNX Runtime 1.12:与ONNX操作集版本11兼容,适合PointPillars模型
- ONNX Runtime 1.16:也被证实可以正常工作
实施步骤
-
卸载当前版本:
pip uninstall onnxruntime -
安装兼容版本:
pip install onnxruntime==1.16.0 -
重新执行导出流程:
python mmdeploy/tools/deploy.py \ mmdeploy/configs/mmdet3d/voxel-detection/voxel-detection_onnxruntime_dynamic.py \ pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py \ pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20220301_150306-37dc2420.pth \ /path/to/input.bin \ --work-dir mmdeploy_model/pointpillars \ --device cpu
预防措施
为了避免类似问题,建议:
- 查阅兼容性文档:在开始模型转换前,仔细阅读MMDeploy和ONNX Runtime的版本兼容性说明
- 使用虚拟环境:为每个项目创建独立的虚拟环境,避免版本冲突
- 记录环境配置:使用
pip freeze > requirements.txt记录所有依赖版本 - 分步验证:先导出小规模模型验证流程,再处理完整模型
技术扩展
ONNX Runtime版本管理
ONNX Runtime的版本选择需要考虑多个因素:
- 操作集支持:不同版本支持的操作集(opset)版本不同
- 性能优化:新版通常包含更多优化,但也可能引入兼容性问题
- 硬件支持:特定版本可能对某些硬件加速有更好的支持
MMDeploy最佳实践
- 模型准备:确保原始模型能在原生框架中正常运行
- 中间检查:在转换过程中检查中间ONNX模型的有效性
- 逐步调试:遇到问题时,尝试简化模型结构定位问题源
通过理解这些原理和采取适当措施,开发者可以更顺利地完成3D检测模型的部署工作。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355