scikit-learn中make_union函数新增verbose_feature_names_out参数解析
在机器学习工作流中,特征工程是构建高效模型的关键步骤。scikit-learn作为Python中最流行的机器学习库之一,提供了丰富的特征处理工具。其中,FeatureUnion和make_union是特征组合的重要组件,允许开发者将多个特征提取器或转换器的输出水平拼接在一起。
近期,scikit-learn社区讨论并通过了一个新特性:为make_union函数添加verbose_feature_names_out参数。这个改进使得make_union的功能与其底层类FeatureUnion更加一致,为用户提供了更灵活的特征命名控制方式。
功能背景
在特征工程中,我们经常需要将来自不同特征提取器的输出合并。例如,可能同时使用TF-IDF向量化和词频统计两种文本特征提取方法。FeatureUnion和其便捷函数make_union就是为此设计的。
verbose_feature_names_out参数控制着输出特征的命名方式。当设置为True时,输出特征名会包含转换器的名称作为前缀;当设置为False时,则只保留原始特征名。这在特征数量多或需要简洁命名时特别有用。
改进内容
此前,verbose_feature_names_out参数仅在FeatureUnion类中可用,而它的便捷函数make_union则没有暴露这个参数。这意味着用户如果想使用这个功能,必须显式地创建FeatureUnion实例,而不能使用更简洁的make_union函数。
新版本的改进使得make_union函数也能接受verbose_feature_names_out参数,保持与FeatureUnion类的一致性,同时维持了API的简洁性。这个改动虽然小,但显著提高了API的一致性,减少了用户的认知负担。
使用示例
from sklearn.pipeline import make_union
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
# 创建特征联合,控制输出特征名的详细程度
feature_union = make_union(
TfidfVectorizer(),
CountVectorizer(),
verbose_feature_names_out=False # 新增参数
)
技术意义
这个改进体现了scikit-learn设计哲学中的几个重要原则:
- API一致性:保持类与其便捷函数之间的参数一致性
- 渐进式复杂度:允许用户从简单函数开始,需要时再转向更复杂的类
- 用户友好性:通过便捷函数降低入门门槛,同时不牺牲高级功能
对于机器学习工程师来说,这个改进意味着可以在保持代码简洁性的同时,获得对特征命名的精细控制,这在生产环境中特别有价值。
总结
scikit-learn持续优化其API设计,这次make_union函数的改进虽然看似微小,但体现了项目对用户体验的重视。通过这样的渐进式改进,scikit-learn保持了其在机器学习生态中的领先地位,同时降低了用户的学习和使用门槛。
对于开发者而言,了解这些API设计背后的思考,有助于更高效地使用工具,构建更可靠的机器学习流水线。随着项目的持续发展,我们可以期待更多这样既保持向后兼容性又提升用户体验的改进。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00