scikit-learn中make_union函数新增verbose_feature_names_out参数解析
在机器学习工作流中,特征工程是构建高效模型的关键步骤。scikit-learn作为Python中最流行的机器学习库之一,提供了丰富的特征处理工具。其中,FeatureUnion和make_union是特征组合的重要组件,允许开发者将多个特征提取器或转换器的输出水平拼接在一起。
近期,scikit-learn社区讨论并通过了一个新特性:为make_union函数添加verbose_feature_names_out参数。这个改进使得make_union的功能与其底层类FeatureUnion更加一致,为用户提供了更灵活的特征命名控制方式。
功能背景
在特征工程中,我们经常需要将来自不同特征提取器的输出合并。例如,可能同时使用TF-IDF向量化和词频统计两种文本特征提取方法。FeatureUnion和其便捷函数make_union就是为此设计的。
verbose_feature_names_out参数控制着输出特征的命名方式。当设置为True时,输出特征名会包含转换器的名称作为前缀;当设置为False时,则只保留原始特征名。这在特征数量多或需要简洁命名时特别有用。
改进内容
此前,verbose_feature_names_out参数仅在FeatureUnion类中可用,而它的便捷函数make_union则没有暴露这个参数。这意味着用户如果想使用这个功能,必须显式地创建FeatureUnion实例,而不能使用更简洁的make_union函数。
新版本的改进使得make_union函数也能接受verbose_feature_names_out参数,保持与FeatureUnion类的一致性,同时维持了API的简洁性。这个改动虽然小,但显著提高了API的一致性,减少了用户的认知负担。
使用示例
from sklearn.pipeline import make_union
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
# 创建特征联合,控制输出特征名的详细程度
feature_union = make_union(
TfidfVectorizer(),
CountVectorizer(),
verbose_feature_names_out=False # 新增参数
)
技术意义
这个改进体现了scikit-learn设计哲学中的几个重要原则:
- API一致性:保持类与其便捷函数之间的参数一致性
- 渐进式复杂度:允许用户从简单函数开始,需要时再转向更复杂的类
- 用户友好性:通过便捷函数降低入门门槛,同时不牺牲高级功能
对于机器学习工程师来说,这个改进意味着可以在保持代码简洁性的同时,获得对特征命名的精细控制,这在生产环境中特别有价值。
总结
scikit-learn持续优化其API设计,这次make_union函数的改进虽然看似微小,但体现了项目对用户体验的重视。通过这样的渐进式改进,scikit-learn保持了其在机器学习生态中的领先地位,同时降低了用户的学习和使用门槛。
对于开发者而言,了解这些API设计背后的思考,有助于更高效地使用工具,构建更可靠的机器学习流水线。随着项目的持续发展,我们可以期待更多这样既保持向后兼容性又提升用户体验的改进。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00