Sherpa-Onnx 流式语音识别模型使用指南
2025-06-06 03:26:01作者:劳婵绚Shirley
Sherpa-Onnx 是一个开源的语音识别框架,支持多种模型格式和推理引擎。本文将重点介绍如何在 Node.js 环境中使用 Sherpa-Onnx 的流式语音识别功能,特别是针对 NeMo 流式模型的实现方法。
流式与非流式模型区别
流式语音识别模型能够实时处理音频流,边接收音频边进行识别,适合需要低延迟的实时应用场景。而非流式模型需要接收完整的音频后才能开始识别,适合对延迟要求不高的离线处理场景。
NeMo 流式模型配置
在 Sherpa-Onnx 中使用 NeMo 流式模型时,需要正确配置模型参数。以 Fast Conformer 流式模型为例,主要需要配置以下文件:
- 编码器模型文件(encoder.onnx)
- 解码器模型文件(decoder.onnx)
- 联合网络模型文件(joiner.onnx)
- 分词器文件(tokens.txt)
这些文件可以从预训练模型包中获取,解压后放置在指定目录即可使用。
Node.js 实现示例
在 Node.js 环境中实现流式语音识别,可以参照以下代码结构:
const sherpaOnnx = require('sherpa-onnx');
// 创建识别器配置
const config = {
featConfig: {
sampleRate: 16000,
featureDim: 80,
},
modelConfig: {
nemo: {
encoder: 'path/to/encoder.onnx',
decoder: 'path/to/decoder.onnx',
joiner: 'path/to/joiner.onnx',
tokens: 'path/to/tokens.txt',
numThreads: 1,
},
},
// 其他配置参数...
};
// 创建识别器实例
const recognizer = new sherpaOnnx.OnlineRecognizer(config);
// 创建音频流处理
const stream = recognizer.createStream();
// 音频数据输入
// stream.acceptWaveform(sampleRate, audioData);
// 获取识别结果
// const result = recognizer.getResult(stream);
流式处理注意事项
-
无需VAD: 流式模型本身具备处理连续音频流的能力,不需要额外使用语音活动检测(VAD)模块。
-
实时性优化: 可以通过调整模型参数和线程数来平衡识别准确率和实时性要求。
-
资源管理: 及时释放完成的音频流对象,避免内存泄漏。
-
延迟控制: 流式模型的识别延迟与模型结构和配置参数密切相关,需要根据实际场景进行调整。
性能调优建议
对于性能要求较高的应用场景,可以考虑以下优化措施:
- 适当增加线程数(numThreads)以提高处理速度
- 优化音频采样率和特征维度配置
- 使用更高效的流式模型结构
- 合理设置识别结果的返回频率
通过以上方法,开发者可以轻松地在 Node.js 环境中实现高效的流式语音识别功能,满足各种实时语音处理需求。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K