Dear ImGui for Unity 使用教程
1. 项目介绍
Dear ImGui for Unity 是一个为 Unity 提供的 UPM(Unity Package Manager)包,用于集成 Dear ImGui 库。Dear ImGui 是一个即时模式图形用户界面(GUI)库,主要用于 C++ 开发。它以轻量级、高效和渲染器无关著称,适用于快速迭代和创建内容创作工具、调试工具等。
该项目通过提供 Unity 的集成包,使得开发者可以在 Unity 中轻松使用 Dear ImGui 的功能,从而加速开发过程,特别是在需要快速原型设计和调试工具的场景中。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Unity 编辑器。然后,按照以下步骤安装 Dear ImGui for Unity:
- 打开 Unity 项目。
- 在 Unity 编辑器中,打开
Window > Package Manager。 - 点击左上角的
+按钮,选择Add package from git URL...。 - 输入以下 URL:
https://github.com/realgamessoftware/dear-imgui-unity.git - 点击
Add按钮,等待安装完成。
2.2 使用
安装完成后,你可以在 Unity 项目中使用 Dear ImGui。以下是一个简单的示例代码,展示如何在 Unity 中使用 Dear ImGui:
using UnityEngine;
using ImGuiNET;
public class DearImGuiDemo : MonoBehaviour
{
void OnEnable()
{
ImGuiUn.Layout += OnLayout;
}
void OnDisable()
{
ImGuiUn.Layout -= OnLayout;
}
void OnLayout()
{
ImGui.ShowDemoWindow();
}
}
2.3 配置
如果你使用的是 Universal Render Pipeline (URP),还需要进行以下配置:
- 在 Unity 编辑器中,打开
Assets > Create > Rendering > Universal Render Pipeline > Pipeline Asset (Forward Renderer)。 - 将创建的
Pipeline Asset拖到Graphics Settings中的Scriptable Render Pipeline Settings字段。 - 在场景中添加一个
DearImGui组件,并将其Render Feature字段设置为Render Im Gui Feature。
3. 应用案例和最佳实践
3.1 应用案例
Dear ImGui for Unity 可以广泛应用于以下场景:
- 游戏开发:用于创建游戏内的调试工具、性能监控面板等。
- 工具开发:用于快速开发 Unity 编辑器扩展工具,提升开发效率。
- 数据可视化:用于实时数据监控和可视化,特别是在需要快速迭代的项目中。
3.2 最佳实践
- 模块化设计:将 Dear ImGui 的功能封装成独立的模块,方便在不同项目中复用。
- 性能优化:避免在每一帧中频繁调用 Dear ImGui 的函数,特别是在性能敏感的场景中。
- 自定义样式:利用 Dear ImGui 的样式系统,定制符合项目风格的 UI。
4. 典型生态项目
4.1 UImGui
UImGui 是另一个基于 Dear ImGui 的 Unity 集成项目,提供了更多的功能和扩展,如支持 Unity 的新输入系统、Docking 功能等。如果你需要更高级的功能,可以考虑使用 UImGui。
4.2 ImGui.NET
ImGui.NET 是 Dear ImGui 的 C# 绑定库,提供了与 C++ 版本相同的功能。如果你需要在 .NET 环境中使用 Dear ImGui,ImGui.NET 是一个不错的选择。
4.3 cimgui
cimgui 是 Dear ImGui 的 C 绑定库,提供了与 C++ 版本相同的功能。如果你需要在 C 环境中使用 Dear ImGui,cimgui 是一个不错的选择。
通过这些生态项目,你可以根据自己的需求选择最适合的工具,进一步提升开发效率和项目质量。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C063
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00