BlenderProc-3DFront 项目安装与配置指南
2025-04-18 14:16:52作者:殷蕙予
1. 项目基础介绍
BlenderProc-3DFront 是一个开源项目,它基于 BlenderProc(Blender Procedural Rendering)框架,并为 3D-Front 数据集提供了多 GPU 批量渲染和 3D 可视化的支持。该项目主要用于辅助 3D 场景的渲染和可视化任务,允许用户在 3D 场景中生成逼真的渲染图像。
主要编程语言:Python
2. 项目使用的关键技术和框架
- BlenderProc:这是一个用于自动生成逼真渲染图像的 Blender 插件,它允许用户进行批量渲染和场景设置。
- 3D-Front 数据集:用于项目测试和展示的数据集,包含了室内场景的 3D 模型。
- VTK(Visualization Toolkit):用于 3D 可视化。
- Conda:用于创建隔离的环境,并管理项目依赖。
3. 项目安装和配置的准备工作与详细步骤
准备工作
- 确保您的计算机上已安装有 Blender。如果没有,请从 Blender 官方网站下载并安装。
- 安装 Conda。Conda 是一个开源的包管理器和环境管理器,可以用于安装 Python 环境和依赖包。
- 准备 3D-Front 数据集。您需要从相应的渠道获得数据集,并将其放置在项目的指定目录下。
安装步骤
-
克隆项目仓库到本地环境:
git clone https://github.com/yinyunie/BlenderProc-3DFront.git cd BlenderProc-3DFront -
使用 Conda 创建一个新环境并安装依赖:
conda env create -f environment.yml conda activate blenderproc -
在激活的环境中,安装项目:
pip install -e . -
准备 3D-Front 数据集。将数据集文件放置在项目的
examples/datasets/front_3d_with_improved_mat/目录下,并按照项目要求进行链接。 -
如果需要下载纹理数据,运行以下脚本:
blenderproc run blenderproc/scripts/download_cc_textures.py ./resources/cctextures -
渲染单个场景的示例:
blenderproc run examples/datasets/front_3d_with_improved_mat/render_dataset_improved_mat.py \ examples/datasets/front_3d_with_improved_mat/3D-FRONT \ examples/datasets/front_3d_with_improved_mat/3D-FUTURE-model \ examples/datasets/front_3d_with_improved_mat/3D-FRONT-texture \ [场景ID] \ resources/cctextures/ \ examples/datasets/front_3d_with_improved_mat/renderings将
[场景ID]替换为实际场景的标识符。 -
如果需要进行批量渲染,运行以下脚本:
python examples/datasets/front_3d_with_improved_mat/multi_render.py \ examples/datasets/front_3d_with_improved_mat/render_dataset_improved_mat.py \ ...(其他参数同上)... \ --n_processes [GPU数量]将
[GPU数量]替换为您的系统上可用的 GPU 数量。 -
对于 2D 和 3D 可视化,运行以下代码:
python visualization/front3d/vis_front3d.py --json_file [场景ID].json同样将
[场景ID]替换为实际场景的标识符。
按照上述步骤,您应该能够成功安装和配置 BlenderProc-3DFront 项目,并开始使用它进行 3D 场景的渲染和可视化。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
499
3.65 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
485
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
314
134
React Native鸿蒙化仓库
JavaScript
297
347
暂无简介
Dart
747
180
Ascend Extension for PyTorch
Python
302
344
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882