BlenderProc-3DFront 项目安装与配置指南
2025-04-18 03:25:40作者:殷蕙予
1. 项目基础介绍
BlenderProc-3DFront 是一个开源项目,它基于 BlenderProc(Blender Procedural Rendering)框架,并为 3D-Front 数据集提供了多 GPU 批量渲染和 3D 可视化的支持。该项目主要用于辅助 3D 场景的渲染和可视化任务,允许用户在 3D 场景中生成逼真的渲染图像。
主要编程语言:Python
2. 项目使用的关键技术和框架
- BlenderProc:这是一个用于自动生成逼真渲染图像的 Blender 插件,它允许用户进行批量渲染和场景设置。
- 3D-Front 数据集:用于项目测试和展示的数据集,包含了室内场景的 3D 模型。
- VTK(Visualization Toolkit):用于 3D 可视化。
- Conda:用于创建隔离的环境,并管理项目依赖。
3. 项目安装和配置的准备工作与详细步骤
准备工作
- 确保您的计算机上已安装有 Blender。如果没有,请从 Blender 官方网站下载并安装。
- 安装 Conda。Conda 是一个开源的包管理器和环境管理器,可以用于安装 Python 环境和依赖包。
- 准备 3D-Front 数据集。您需要从相应的渠道获得数据集,并将其放置在项目的指定目录下。
安装步骤
-
克隆项目仓库到本地环境:
git clone https://github.com/yinyunie/BlenderProc-3DFront.git cd BlenderProc-3DFront
-
使用 Conda 创建一个新环境并安装依赖:
conda env create -f environment.yml conda activate blenderproc
-
在激活的环境中,安装项目:
pip install -e .
-
准备 3D-Front 数据集。将数据集文件放置在项目的
examples/datasets/front_3d_with_improved_mat/
目录下,并按照项目要求进行链接。 -
如果需要下载纹理数据,运行以下脚本:
blenderproc run blenderproc/scripts/download_cc_textures.py ./resources/cctextures
-
渲染单个场景的示例:
blenderproc run examples/datasets/front_3d_with_improved_mat/render_dataset_improved_mat.py \ examples/datasets/front_3d_with_improved_mat/3D-FRONT \ examples/datasets/front_3d_with_improved_mat/3D-FUTURE-model \ examples/datasets/front_3d_with_improved_mat/3D-FRONT-texture \ [场景ID] \ resources/cctextures/ \ examples/datasets/front_3d_with_improved_mat/renderings
将
[场景ID]
替换为实际场景的标识符。 -
如果需要进行批量渲染,运行以下脚本:
python examples/datasets/front_3d_with_improved_mat/multi_render.py \ examples/datasets/front_3d_with_improved_mat/render_dataset_improved_mat.py \ ...(其他参数同上)... \ --n_processes [GPU数量]
将
[GPU数量]
替换为您的系统上可用的 GPU 数量。 -
对于 2D 和 3D 可视化,运行以下代码:
python visualization/front3d/vis_front3d.py --json_file [场景ID].json
同样将
[场景ID]
替换为实际场景的标识符。
按照上述步骤,您应该能够成功安装和配置 BlenderProc-3DFront 项目,并开始使用它进行 3D 场景的渲染和可视化。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp音乐播放器项目中的函数调用问题解析9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp 课程中关于角色与职责描述的语法优化建议
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
884
524

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

React Native鸿蒙化仓库
C++
182
264

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
364
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
736
105