ProxylessNAS:直接在目标任务和硬件上进行神经架构搜索
2024-09-17 18:03:48作者:何举烈Damon
项目介绍
ProxylessNAS 是一个革命性的神经架构搜索(NAS)框架,它能够在不使用任何代理的情况下,直接在目标任务和硬件上高效地搜索神经网络架构。该项目由 Han Cai、Ligeng Zhu 和 Song Han 开发,并在 2019 年的国际学习表示会议(ICLR)上发表。ProxylessNAS 不仅在多个竞赛中取得了优异的成绩,还已经被集成到多个知名的机器学习平台中,如 PyTorch Hub、Microsoft NNI 和 Amazon AutoGluon。
项目技术分析
ProxylessNAS 的核心技术在于其能够在目标任务和硬件上直接进行架构搜索,而不需要依赖代理模型。这种方法大大减少了搜索时间和计算资源的消耗。具体来说,ProxylessNAS 通过以下几个关键技术实现了这一目标:
- 直接搜索:传统的 NAS 方法通常依赖于代理模型来估计性能,而 ProxylessNAS 则直接在目标任务和硬件上进行搜索,从而避免了代理模型的误差。
- 硬件感知:ProxylessNAS 能够根据不同的硬件平台(如 CPU、GPU、移动设备)优化网络架构,确保在不同硬件上的高效运行。
- 可视化搜索过程:项目提供了搜索过程的可视化,帮助用户更好地理解搜索的动态和结果。
项目及技术应用场景
ProxylessNAS 的应用场景非常广泛,特别适合以下几种情况:
- 移动设备:在资源受限的移动设备上,ProxylessNAS 能够搜索出高效的神经网络架构,提升应用的性能和响应速度。
- 边缘计算:在边缘计算环境中,ProxylessNAS 可以帮助优化模型,减少延迟和资源消耗。
- 实时应用:对于需要实时处理的场景(如实时视频分析、自动驾驶等),ProxylessNAS 能够提供高效的模型,确保系统的实时性和稳定性。
项目特点
ProxylessNAS 具有以下几个显著特点:
- 高效性:直接在目标任务和硬件上进行搜索,避免了代理模型的误差,搜索效率更高。
- 灵活性:支持多种硬件平台,能够根据不同的硬件特性优化网络架构。
- 易用性:已经被集成到多个主流机器学习平台中,用户可以通过简单的代码调用加载和使用预训练模型。
- 高性能:在多个竞赛中取得了优异的成绩,证明了其在实际应用中的高性能。
总结
ProxylessNAS 是一个创新的神经架构搜索框架,它通过直接在目标任务和硬件上进行搜索,实现了高效、灵活和高性能的网络架构优化。无论是在移动设备、边缘计算还是实时应用中,ProxylessNAS 都能为用户提供强大的支持。如果你正在寻找一个能够在不同硬件平台上高效运行的神经网络架构,ProxylessNAS 绝对值得一试。
登录后查看全文
热门项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0277community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
941
555

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
509
44

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.32 K

React Native鸿蒙化仓库
C++
194
279