PaddleSeg中PP-LiteSeg模型导出ONNX的结构问题解析
2025-05-26 11:57:05作者:郜逊炳
问题背景
在使用PaddleSeg进行图像分割模型训练时,用户遇到了PP-LiteSeg模型导出ONNX格式后结构不一致的问题。具体表现为用户自行训练的模型导出ONNX后与预训练模型的结构存在差异,且在某些情况下会出现导出失败的情况。
核心问题分析
- 模型结构差异:用户自行训练的PP-LiteSeg_T_STDC1_cityscapes模型与预训练模型在ONNX导出后的结构不一致
- 导出失败问题:在尝试导出ONNX时出现"Adaptive only support static input shape"的错误提示
解决方案
正确导出ONNX的步骤
-
固定输入尺寸:在导出模型时必须指定固定的输入尺寸,使用
--input_shape参数python tools/export.py \ --config configs/pp_liteseg/pp_liteseg_stdc1_cityscapes_1024x512_scale0.5_160k.yml \ --model_path output/model.pdparams \ --save_dir output/inference_model \ --input_shape 1 3 1024 512 -
使用预训练模型:如果想保持与预训练模型一致的结构,建议直接使用官方提供的预训练权重进行微调
常见问题排查
- 输入尺寸问题:未指定固定输入尺寸会导致ONNX导出失败,因为ONNX需要静态输入形状
- 训练过程修改:自行训练过程中对模型结构的任何修改都会导致最终导出的ONNX结构变化
- 版本一致性:确保使用的PaddleSeg版本与预训练模型版本匹配
技术要点
- PP-LiteSeg模型特点:PP-LiteSeg是PaddleSeg中一个轻量级的语义分割模型,特别适合移动端和嵌入式设备部署
- ONNX导出限制:ONNX格式对模型结构有一定要求,特别是对动态形状的支持有限
- 模型部署准备:导出为ONNX前必须确保模型结构固定,输入输出维度明确
最佳实践建议
- 对于生产环境使用,建议直接从官方提供的预训练模型开始
- 导出前仔细检查配置文件,确保没有无意中修改了模型结构
- 使用Netron等工具可视化导出的ONNX模型,验证结构是否符合预期
- 对于嵌入式部署,可以考虑使用Paddle Lite等专用推理引擎获得更好的性能
通过遵循上述建议和解决方案,可以确保PP-LiteSeg模型正确导出为ONNX格式,并保持与预训练模型一致的结构,为后续的部署和应用打下良好基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134