PaddleSeg训练与评估中的图像尺寸问题解析
2025-05-26 10:09:10作者:滑思眉Philip
训练与评估阶段的图像尺寸处理
在PaddleSeg项目中,训练和评估阶段的图像尺寸处理是一个需要特别注意的技术点。许多开发者在使用过程中会遇到关于图像尺寸配置的疑问,特别是当训练阶段使用了动态尺寸变换时,评估阶段应该如何配置才能保持一致性。
训练阶段的尺寸变换
在训练配置中,常见的尺寸变换操作包括:
- 固定尺寸Resize:将输入图像统一调整到指定尺寸(如512x512)
- 动态尺寸变换:使用ResizeStepScaling等操作进行随机尺寸缩放
train_dataset:
transforms:
- type: Resize
target_size: [512, 512]
# 或
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 0.5
scale_step_size: 0
评估阶段的尺寸处理
评估阶段通常建议使用固定尺寸,这与训练阶段可以有所不同:
- 如果训练使用固定尺寸,评估也应使用相同尺寸
- 如果训练使用动态变换,评估建议使用固定尺寸或原图尺寸
val_dataset:
transforms:
- type: Resize
target_size: [512, 512] # 固定评估尺寸
类别不平衡问题的解决方案
在样本数量极不平衡的情况下,PaddleSeg提供了多种处理方式:
损失函数权重调整
- 类别权重设置:为不同类别分配不同权重
- 多损失函数组合:如PP-LiteSeg使用3个输出头的损失组合
loss:
types:
- type: OhemCrossEntropyLoss
min_kept: 130000
weight: [0.5, 0.2, 0.3] # 类别权重
- type: OhemCrossEntropyLoss
min_kept: 130000
weight: [0.5, 0.2, 0.3]
- type: OhemCrossEntropyLoss
min_kept: 130000
weight: [0.5, 0.2, 0.3]
coef: [1, 1, 1] # 损失函数权重
常用权重计算策略
- Softmax归一化权重
- 基于最小类别样本数的权重
- 基于中位数样本数的权重
- 使用sklearn的compute_class_weight
PP-LiteSeg模型结构调整建议
当需要修改PP-LiteSeg的backbone_indices时,需要注意以下配套调整:
- backbone_indices调整:从默认[2,3,4]改为[1,2,3]时
- 通道数配套调整:
- arm_out_chs应相应减小
- seg_head_inter_chs也应调整
model:
type: PPLiteSeg
backbone:
type: STDC2
backbone_indices: [1, 2, 3] # 注意YAML语法
arm_out_chs: [32, 32, 64] # 调整后的通道数
seg_head_inter_chs: [32, 32, 32]
实际应用建议
- 尺寸一致性:确保训练和推理时的预处理一致
- 样本不平衡:优先尝试调整损失函数权重
- 模型结构调整:修改结构后需要重新训练
- 配置语法:注意YAML配置文件的正确语法格式
通过合理配置这些参数,可以显著提升模型在特定任务上的表现,特别是在处理小样本和不平衡数据时。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178