Bunster v0.11.0 版本发布:模块化与算术运算支持
Bunster 是一个现代化的 shell 脚本语言,旨在提供更简洁、更强大的脚本编写体验。它结合了传统 shell 脚本的便利性和现代编程语言的特性,为开发者提供了更高效的脚本开发工具。最新发布的 v0.11.0 版本带来了两个重要的新特性:模块化支持和算术运算增强,这些改进将显著提升脚本的组织性和表达能力。
模块化支持:更好的代码组织
在 v0.11.0 版本中,Bunster 引入了模块化支持,这是脚本开发中一个重要的进步。模块化允许开发者将代码分散到多个文件中,这对于构建大型脚本项目特别有价值。
传统 shell 脚本通常将所有代码放在一个文件中,随着脚本规模的增长,这会带来维护困难。Bunster 的模块系统解决了这个问题,它允许开发者:
- 将相关功能组织到独立的模块文件中
- 通过清晰的导入机制使用这些模块
- 实现更好的代码复用和封装
模块化不仅提高了代码的可维护性,还使得团队协作更加顺畅。开发者可以专注于特定功能的开发,而不必担心整个脚本的复杂性。
增强的算术运算能力
v0.11.0 版本显著增强了 Bunster 的算术运算能力,引入了三种新的表达式语法:
$(())
形式的算术扩展(())
形式的算术求值let
命令用于变量赋值
这些新增的算术运算语法提供了更灵活、更强大的数值计算能力。特别是 let
关键字的引入,使得变量赋值和算术运算可以更自然地表达,减少了传统 shell 脚本中算术运算的复杂性。
此外,新版本还特别支持了 for ((...))
循环语法,这是 C 风格循环在 shell 脚本中的实现,为循环控制提供了更直观的表达方式。
其他改进与修复
除了主要的新特性外,v0.11.0 版本还包含了一些重要的改进和错误修复:
- 修复了管道命令在子 shell 中运行的问题,确保了管道操作的预期行为
- 解决了嵌套路径嵌入时可能出现的崩溃问题
- 进行了代码清理和优化,提高了整体的稳定性和性能
总结
Bunster v0.11.0 版本的发布标志着该项目在脚本语言功能上的重要进步。模块化支持使得大型脚本项目的开发更加可行,而增强的算术运算能力则提供了更强大的数值处理工具。这些改进使 Bunster 在保持 shell 脚本简洁性的同时,向着更现代化、更强大的脚本语言方向发展。
对于已经使用 Bunster 的开发者,升级到 v0.11.0 版本将能够体验到更高效的开发流程;而对于考虑采用新脚本工具的开发者,这些新特性使得 Bunster 成为一个更具吸引力的选择。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









