Gaussian Splatting项目中NeRF合成数据集浮点问题分析与解决
问题背景
在使用Gaussian Splatting项目的最新版本对NeRF合成数据集进行重建时,用户发现重建结果中出现了大量浮点(Floaters)问题。浮点问题指的是在3D重建结果中出现的孤立、漂浮在空中的异常点云或几何结构,这些结构在实际场景中并不存在,会严重影响重建质量。
现象描述
从用户提供的截图可以看出,在乐高(lego)数据集的渲染结果中,模型周围出现了大量不规则的漂浮点云,这些点云与主体模型没有物理连接,呈现出明显的噪声特征。有趣的是,用户反映在2024年初使用早期版本时并未出现此类问题,这表明可能是代码更新引入了某些变化导致了这一问题。
技术分析
浮点问题的产生通常与以下几个技术因素有关:
-
点云初始化策略:Gaussian Splatting在重建过程中需要初始化3D高斯分布,不合理的初始化可能导致点云分散
-
优化算法参数:包括学习率、迭代次数等超参数的设置会影响点云的收敛性
-
场景几何约束:缺乏足够的几何约束可能导致点云在优化过程中"逃逸"到自由空间
-
相机参数精度:不准确的相机参数会导致深度估计错误,产生漂浮点云
解决方案
根据技术社区的讨论,解决这一问题的主要方法是调整训练参数:
-
降低初始分辨率:通过设置
--resolution 1参数可以改善重建质量 -
控制迭代次数:7000次迭代对于某些场景可能不足,可以适当增加
-
调整球谐函数阶数:使用
--sh_degree 1限制球谐函数的复杂度 -
考虑使用早期版本:如果问题确实由代码更新引起,可以回退到稳定版本
实践建议
对于使用Gaussian Splatting进行3D重建的研究人员和开发者,建议:
- 对新数据集进行小规模测试,确定最佳参数组合
- 记录每次训练的完整参数配置,便于问题排查
- 关注项目更新日志,了解可能影响重建质量的代码变更
- 对于合成数据集,可以尝试不同的输入图像数量和视角分布
总结
Gaussian Splatting作为先进的3D重建技术,在实际应用中可能会遇到各种重建质量问题。浮点问题的出现既可能是参数配置不当导致,也可能是算法本身的局限性。通过合理的参数调整和版本控制,大多数情况下可以获得令人满意的重建结果。随着项目的持续发展,这类问题有望在未来的版本中得到更好的解决。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00