Grafbase网关0.24.0版本发布:查询预热与性能优化
Grafbase是一个开源的GraphQL网关项目,它能够帮助开发者构建高性能的GraphQL API。作为GraphQL查询的入口点,Grafbase网关提供了查询规划、缓存、监控等核心功能,是构建现代API服务的重要组件。
查询预热功能
在0.24.0版本中,Grafbase网关引入了一项重要的新功能——查询预热(Query Warming)。这项功能允许开发者预先将预期的查询加载到缓存中,从而在实际请求到来时能够立即提供响应,显著减少首次查询的延迟。
查询预热通过操作缓存配置进行管理,开发者可以在配置文件中进行如下设置:
[operation_caching]
enabled = true # 启用操作缓存,默认为true
limit = 1000 # 最大缓存操作数,默认为1000
warm_on_reload = false # 重载时预热缓存,默认为false
warming_percent = 100 # 预热缓存百分比,默认为100
值得注意的是,查询预热功能目前仅在与Graph Delivery Network(GDN)配合使用时有效,且需要网关从GDN接收联邦模式更新时才能正常工作。
性能优化与修复
本次版本更新包含了多项性能优化和问题修复:
-
查询规划改进:对类型条件和skip/include指令的处理进行了优化,使得查询规划更加智能和高效。
-
操作缓存加速:对操作缓存机制进行了性能优化,提高了缓存命中率和响应速度。
-
依赖更新:更新了项目依赖,确保使用最新稳定版本的第三方库。
重要变更
0.24.0版本包含一个重要的环境变量名称变更:原先的__GRAFBASE_OTEL_URL环境变量已更名为GRAFBASE_OTEL_URL。这一变更移除了变量名中的双下划线前缀,使其更加符合常见的环境变量命名规范。
技术实现细节
查询预热功能的实现基于对GraphQL操作的分析和预测。当启用该功能后,网关会:
- 分析历史查询模式,识别高频和关键查询
- 在系统启动或模式更新时,预先执行这些查询
- 将结果存储在操作缓存中
- 在实际请求到达时直接从缓存提供响应
这种机制特别适用于生产环境中那些可预测的查询模式,能够显著改善用户体验,特别是对于首次访问的用户。
总结
Grafbase网关0.24.0版本通过引入查询预热功能,进一步提升了GraphQL API的性能表现。结合多项查询规划优化和缓存改进,这个版本为开发者提供了更高效、更可靠的GraphQL网关解决方案。对于正在使用或考虑使用Grafbase的项目团队来说,升级到这个版本将能够获得更好的性能体验和更稳定的运行表现。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00