Apache Doris 磁盘溢出(Spill Disk)机制深度解析
2025-06-27 03:26:48作者:翟萌耘Ralph
概述:为什么需要磁盘溢出机制
Apache Doris 作为一款高性能的MPP分析型数据库,其计算层采用全内存处理架构。这种设计虽然带来了极高的查询性能,但在处理大规模数据集或复杂查询时,内存资源往往成为瓶颈。根据线上统计,相当比例的查询错误都与内存问题相关。
随着越来越多的用户将ETL数据处理、多表物化视图处理、复杂AdHoc查询等任务迁移到Doris,单纯依赖内存处理已无法满足需求。磁盘溢出(Spill Disk)机制应运而生,它通过将中间计算结果临时写入磁盘,突破了单节点内存限制,使系统能够处理远超内存容量的大型查询任务。
核心工作机制
内存管理三级架构
Doris的内存管理采用三级架构设计:
- 进程级内存管理:通过be.conf中的mem_limit参数控制整个BE进程的内存使用上限
- 工作负载组级:通过Workload Group实现不同业务负载的资源隔离
- 查询级:控制单个查询的内存使用量

溢出触发流程
- 内存预估:执行过程中,Doris预估每个数据块处理所需内存
- 内存申请:向统一内存管理器申请内存资源
- 溢出判断:当内存不足时,暂停当前查询
- 选择溢出算子:选取内存占用最大的算子进行磁盘溢出
- 恢复执行:溢出完成后恢复查询执行
支持溢出的算子类型
当前版本支持以下算子类型的磁盘溢出:
- Hash Join算子:处理大表连接时的中间结果
- 聚合算子:处理大规模数据聚合的中间状态
- 排序算子:处理大规模数据排序的临时结果
- CTE(公共表表达式):处理复杂查询中的临时结果集
配置与优化指南
BE节点配置
# 溢出文件存储路径(建议使用独立磁盘)
spill_storage_root_path=/mnt/disk1/spilltest/doris/be/storage;/mnt/disk2/doris-spill
# 溢出磁盘空间限制(建议设置为100%当使用独立磁盘时)
spill_storage_limit=100%
会话变量设置
-- 启用溢出功能
SET enable_spill = true;
-- 设置查询内存限制
SET exec_mem_limit = 10g;
-- 禁用内存超额分配
SET enable_mem_overcommit = false;
工作负载组优化
-- 调整工作负载组内存占比
ALTER WORKLOAD GROUP normal PROPERTIES ('memory_limit'='90%');
监控与诊断
审计日志分析
审计日志新增了两个关键字段:
SpillWriteBytesToLocalStorage:写入磁盘的数据量SpillReadBytesFromLocalStorage:从磁盘读取的数据量
Profile指标解读
以HashJoin算子为例,溢出相关的关键指标包括:
Spilled:是否触发了溢出SpillWriteRows:溢出行数SpillWriteFileBytes:溢出文件大小SpillTotalTime:总溢出耗时SpillBuildTime:构建溢出分区耗时
系统表监控
backend_active_tasks表新增溢出相关字段workload_group_resource_usage表新增写入缓冲区使用情况
性能测试数据
在10TB TPC-DS测试数据集上(内存与数据量比为1:52),所有99个查询均成功执行,总耗时约32,000秒。测试环境配置:
- FE节点:16核32GB
- BE节点:16核64GB(3节点)
典型查询耗时示例:
- 简单查询:20-30秒
- 中等复杂度查询:2-3分钟
- 复杂查询:5-10分钟
最佳实践建议
- 独立磁盘配置:为溢出文件配置独立磁盘,避免影响正常数据存储
- SSD优先:溢出操作会产生大量磁盘IO,建议使用SSD
- 超时调整:溢出会增加查询时间,适当增大query_timeout
- 内存监控:密切监控
workload_group_resource_usage表 - 渐进式优化:从小数据集开始测试,逐步增加数据量观察溢出影响
未来发展方向
- 支持更多算子的溢出能力(如窗口函数、Intersect等)
- 优化溢出情况下的查询性能
- 减少磁盘空间占用
- 增强溢出过程的稳定性
- 提供更细粒度的溢出策略控制
通过合理配置和使用磁盘溢出机制,Apache Doris能够稳定高效地处理超大规模数据查询,为用户提供更强大的数据分析能力。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
SocketCluster与数据库集成:实现实时数据同步的终极指南 Claude Code Router项目环境变量配置与常见问题解析Reachability的隐私合规性:iOS 17+ PrivacyInfo.xcprivacy配置指南 Nigate:为Mac用户量身定制的免费NTFS解决方案终极解决:Mariko机型17.0.1固件卡LOGO问题完全指南终极解决方案:bypass11工具从运行错误到系统稳定性完全指南 Rclone高级功能:加密、压缩与虚拟后端实战 kohya-ss/sd-scripts 图像生成脚本详解【免费下载】 AKHQ项目安装部署指南:三种主流方式详解 text-to-lora:即插即用的Transformer适配方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350