ModelContextProtocol C SDK 资源处理器设计解析
静态资源与模板资源的处理机制
在ModelContextProtocol C# SDK中,资源处理是一个核心功能模块。开发者可以通过两种方式定义资源:静态资源和模板资源。静态资源是指那些具有固定URI的资源,而模板资源则使用URI模板来动态生成资源路径。
当前实现的问题分析
在现有实现中,SDK要求开发者必须同时实现ListResources和ReadResource两个处理器才能正常启动服务。这种设计对于只需要模板资源功能的开发者来说显得不够灵活,因为模板资源场景下可能只需要实现ListResourceTemplates和ReadResource处理器就足够了。
技术实现细节
在底层代码中,服务启动时会检查处理器配置情况。如果检测到启用了资源功能但没有配置必要的处理器,就会抛出错误提示:"Resources capability was enabled, but ListResources and/or ReadResource handlers were not specified."
解决方案探讨
针对这个问题,开发团队面临两个技术选择:
-
复用现有处理器:让
WithReadResourceHandler同时处理静态资源和模板资源的读取请求,这与TypeScript实现保持一致,保持了跨语言SDK的一致性。 -
新增专用处理器:引入专门的
WithReadResourceTemplateHandler来处理模板资源,这样设计更加明确,但会增加API的复杂度。
最佳实践建议
从代码示例可以看出,开发者已经能够通过URI模板和参数解析来实现灵活的资源配置。建议采用第一种方案,即复用现有处理器,这样既保持了API简洁性,又能满足功能需求。
总结
资源处理是ModelContextProtocol的核心功能之一,C# SDK在这方面的设计需要兼顾灵活性和易用性。通过优化处理器配置逻辑,可以使SDK更好地适应不同场景下的资源管理需求,提升开发体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00