AWS Deep Learning Containers发布PyTorch 2.5.1训练镜像更新
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,它集成了主流深度学习框架及其依赖项,使开发者能够快速部署和运行深度学习工作负载。这些容器经过AWS优化,可直接在Amazon EC2、Amazon ECS、Amazon EKS和SageMaker等服务上使用。
近日,AWS Deep Learning Containers项目发布了针对PyTorch框架的重要更新,推出了基于PyTorch 2.5.1版本的新训练镜像。这次更新主要包含两个关键镜像版本:
- CPU版本:基于Ubuntu 22.04操作系统,预装了Python 3.11环境,适用于无GPU加速的计算场景
 - GPU版本:同样基于Ubuntu 22.04和Python 3.11,但针对CUDA 12.4进行了优化,支持NVIDIA GPU加速
 
这两个镜像都包含了PyTorch生态系统的核心组件:torch 2.5.1、torchvision 0.20.1和torchaudio 2.5.1。值得注意的是,GPU版本还额外包含了smdistributed-dataparallel 2.6.0库,这是AWS开发的分布式数据并行训练工具,可帮助用户在多GPU环境下高效训练模型。
在软件包管理方面,这两个镜像都预装了深度学习开发常用的工具链:
- 数据处理和分析工具:pandas 2.2.3、numpy 1.26.4、scipy 1.15.2
 - 机器学习工具:scikit-learn 1.6.1、fastai 2.7.19
 - 计算机视觉库:opencv-python 4.11.0.86、pillow 11.1.0
 - AWS服务集成:boto3 1.37.11、sagemaker 2.241.0
 - 开发工具:Cython 3.0.12、pybind11 2.13.6
 
对于开发者而言,使用这些预构建的容器镜像可以带来几个显著优势:
- 环境一致性:确保开发、测试和生产环境使用完全相同的软件版本
 - 快速部署:无需手动安装和配置复杂的深度学习框架及其依赖项
 - 性能优化:AWS已经对镜像进行了性能调优,特别针对其云环境
 - 安全性:定期更新安全补丁,减少潜在漏洞
 
对于需要在SageMaker服务上运行PyTorch训练任务的用户,这些新镜像提供了开箱即用的体验。用户可以直接指定相应的镜像标签来启动训练作业,无需担心环境配置问题。特别是对于大规模分布式训练场景,集成的smdistributed-dataparallel库可以显著简化多GPU训练的实现难度。
随着PyTorch生态系统的快速发展,AWS Deep Learning Containers的定期更新确保了开发者能够及时获得最新的框架功能和性能改进,同时保持与AWS云服务的紧密集成。这种托管式的深度学习环境解决方案,正在成为越来越多企业和研究机构的首选。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00