AWS Deep Learning Containers发布PyTorch 2.5.1训练镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,旨在简化机器学习工作负载的部署过程。这些容器经过优化,可以直接在Amazon EC2实例或Amazon ECS/EKS集群上运行,为用户提供开箱即用的深度学习环境。
近日,AWS Deep Learning Containers项目发布了针对PyTorch框架的新版本训练镜像,主要版本为PyTorch 2.5.1。这一更新为机器学习开发者带来了最新的PyTorch功能特性和性能改进。
镜像版本概览
本次发布的镜像包含两个主要变体:
-
CPU版本:基于Ubuntu 22.04操作系统,预装了Python 3.11环境,支持在CPU上运行的PyTorch 2.5.1训练工作负载。
-
GPU版本:同样基于Ubuntu 22.04和Python 3.11,但针对GPU加速进行了优化,使用了CUDA 12.4工具包,能够充分利用NVIDIA GPU的计算能力。
关键软件包版本
两个版本的镜像都预装了丰富的机器学习生态系统工具链:
- 核心框架:PyTorch 2.5.1(CPU/GPU版本)、TorchVision 0.20.1、TorchAudio 2.5.1
- 数据处理:NumPy 1.26.4、Pandas 2.2.3、OpenCV 4.10.0
- 机器学习工具:scikit-learn 1.5.2、scipy 1.14.1、fastai 2.7.18
- AWS集成:boto3 1.35.63、sagemaker 2.233.0、smdebug-rulesconfig 1.0.1
- 开发工具:Cython 3.0.11、pybind11 2.13.6
技术特点与优势
-
Python 3.11支持:新版本镜像采用了Python 3.11作为默认环境,相比之前的Python版本,3.11在性能上有显著提升,特别是对于CPU密集型任务。
-
CUDA 12.4兼容性:GPU版本镜像基于CUDA 12.4构建,能够充分利用最新NVIDIA GPU的硬件特性,为深度学习训练提供更好的加速支持。
-
Ubuntu 22.04基础:使用长期支持的Ubuntu 22.04作为基础操作系统,确保了系统的稳定性和安全性。
-
完整的ML工具链:镜像预装了从数据处理到模型训练、调试的全套工具,开发者可以立即开始工作而无需花费时间配置环境。
-
AWS服务深度集成:内置的AWS SDK和SageMaker工具包使得将训练工作流与AWS云服务集成变得非常简单。
使用场景
这些预构建的Docker镜像特别适合以下场景:
- 快速原型开发:开发者可以立即开始模型训练,无需花费时间配置复杂的依赖环境。
- 生产环境部署:经过AWS优化的镜像确保了性能和稳定性,可以直接用于生产环境。
- 团队协作:统一的开发环境减少了"在我机器上能运行"的问题,提高了团队协作效率。
- 教育研究:学生和研究人员可以专注于算法本身,而不是环境配置。
总结
AWS Deep Learning Containers的这次更新为PyTorch用户带来了最新的框架版本和工具链支持。通过使用这些预构建的镜像,机器学习团队可以显著减少环境配置时间,更快地将精力集中在模型开发和训练上。特别是对于已经在使用AWS云服务的团队,这些深度集成的容器镜像能够提供无缝的云端机器学习体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00