CuPy在NVIDIA Jetson Orin Nano上的内存管理问题分析
2025-05-23 18:13:29作者:翟江哲Frasier
在NVIDIA Jetson Orin Nano(ARM64架构)设备上使用CuPy进行数组操作时,开发者可能会遇到GPU内存持续增长的问题。本文将通过一个典型场景分析这种现象的原因,并提供解决方案。
问题现象
当使用CuPy的concatenate
函数迭代构建数组时,GPU内存会持续增长。例如以下代码会导致GPU内存使用量超过300MB:
import cupy as xp
array = xp.empty(0, dtype=xp.float64)
for i in range(1000):
new_data = xp.random.rand(60)
array = xp.concatenate([array, new_data])
而如果预先分配好数组空间,内存使用则保持稳定在70MB左右:
array = xp.empty(60000, dtype=xp.float64)
for i in range(1000):
new_data = xp.random.rand(60)
array[60*i:60*(i+1)] = new_data
原因分析
这种现象并非内存泄漏,而是CuPy内存池的预期行为。当反复使用concatenate
时:
- 每次操作都会分配新的内存区域
- 这些区域大小不一,难以被后续操作重用
- 内存池中会积累大量碎片化的内存块
- 虽然Python层面的内存看起来很小,但GPU内存池中保留了这些分配
解决方案
针对这种情况,开发者有以下几种选择:
-
预分配数组空间(推荐方案) 这是最高效的方法,避免了反复分配内存的开销。
-
手动清理内存池 可以定期调用
pool.free_all_blocks()
强制释放未使用的内存块:from cupy.cuda import memory memory.get_current_memory_pool().free_all_blocks()
-
设置GPU内存限制 通过配置内存池参数来限制最大内存使用量。
最佳实践建议
在嵌入式设备如Jetson系列上开发时,应特别注意内存管理:
- 尽量预分配大块内存,避免频繁的小内存分配
- 对于循环操作,考虑重用已分配的内存空间
- 监控GPU内存使用情况,适时进行手动清理
- 在内存受限的环境中,合理设置内存池参数
理解CuPy的内存管理机制对于开发高效的GPU加速应用至关重要,特别是在资源受限的嵌入式平台上。
登录后查看全文
热门项目推荐
相关项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0277community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息012Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
941
555

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
510
44

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.32 K

React Native鸿蒙化仓库
C++
194
279