GLM-4模型微调后调用失败的解决方案
问题背景
在使用THUDM/GLM-4开源项目时,许多开发者尝试对glm-4-9b-chat模型进行LoRA微调后,在调用微调后的模型时遇到了识别问题。具体表现为当尝试通过openai_api_server.py或vllm_cli_demo.py加载微调后的模型时,系统无法识别模型类型,抛出"Unrecognized model"错误。
问题分析
该问题主要源于以下几个技术点:
-
模型配置文件缺失:微调后的模型checkpoint目录中缺少完整的config.json文件,或者其中的model_type字段未被正确设置。
-
版本兼容性问题:transformers和vllm库的版本不匹配可能导致对模型配置的解析出现偏差。
-
路径识别问题:当使用相对路径或非标准路径加载模型时,某些库可能无法正确处理模型配置。
解决方案
方案一:版本降级(推荐)
经过验证,使用以下版本组合可以解决该问题:
vllm==0.6.1.post2
transformers==0.44.0
这是目前最稳定的解决方案,适用于大多数微调场景。
方案二:手动修复模型配置
如果希望保持最新版本,可以尝试以下步骤:
- 从原始THUDM/glm-4-9b-chat模型中复制config.json文件
- 将其放入微调后的checkpoint目录
- 确保config.json中包含正确的model_type字段
方案三:绝对路径加载
尝试使用绝对路径而非相对路径加载模型,确保所有依赖文件都能被正确找到:
MODEL_PATH = os.path.abspath('../finetune_demo/output/checkpoint-12000')
最佳实践建议
-
环境隔离:为GLM-4项目创建专用的conda或venv环境,避免与其他项目的依赖冲突。
-
版本锁定:在requirements.txt中明确指定库版本,特别是vllm和transformers。
-
模型验证:微调完成后,先使用transformers直接加载模型进行简单测试,确认模型可以正常加载后再尝试API调用。
-
日志记录:在加载模型时添加详细的日志输出,帮助定位问题所在。
技术原理
该问题的本质在于transformers库的AutoConfig机制。当加载模型时,transformers会首先尝试从config.json中读取model_type字段,如果找不到则会尝试通过模型路径名匹配已知模型类型。在GLM-4的微调场景中,由于checkpoint目录结构可能不完整,导致这一机制失效。
通过版本降级有效的根本原因是,较新版本的transformers对模型配置的验证更加严格,而旧版本在这方面的容错性更好。这也提醒我们在使用大型语言模型时,保持整个工具链版本的一致性非常重要。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









