GLM-4模型微调后调用失败的解决方案
问题背景
在使用THUDM/GLM-4开源项目时,许多开发者尝试对glm-4-9b-chat模型进行LoRA微调后,在调用微调后的模型时遇到了识别问题。具体表现为当尝试通过openai_api_server.py或vllm_cli_demo.py加载微调后的模型时,系统无法识别模型类型,抛出"Unrecognized model"错误。
问题分析
该问题主要源于以下几个技术点:
-
模型配置文件缺失:微调后的模型checkpoint目录中缺少完整的config.json文件,或者其中的model_type字段未被正确设置。
-
版本兼容性问题:transformers和vllm库的版本不匹配可能导致对模型配置的解析出现偏差。
-
路径识别问题:当使用相对路径或非标准路径加载模型时,某些库可能无法正确处理模型配置。
解决方案
方案一:版本降级(推荐)
经过验证,使用以下版本组合可以解决该问题:
vllm==0.6.1.post2
transformers==0.44.0
这是目前最稳定的解决方案,适用于大多数微调场景。
方案二:手动修复模型配置
如果希望保持最新版本,可以尝试以下步骤:
- 从原始THUDM/glm-4-9b-chat模型中复制config.json文件
- 将其放入微调后的checkpoint目录
- 确保config.json中包含正确的model_type字段
方案三:绝对路径加载
尝试使用绝对路径而非相对路径加载模型,确保所有依赖文件都能被正确找到:
MODEL_PATH = os.path.abspath('../finetune_demo/output/checkpoint-12000')
最佳实践建议
-
环境隔离:为GLM-4项目创建专用的conda或venv环境,避免与其他项目的依赖冲突。
-
版本锁定:在requirements.txt中明确指定库版本,特别是vllm和transformers。
-
模型验证:微调完成后,先使用transformers直接加载模型进行简单测试,确认模型可以正常加载后再尝试API调用。
-
日志记录:在加载模型时添加详细的日志输出,帮助定位问题所在。
技术原理
该问题的本质在于transformers库的AutoConfig机制。当加载模型时,transformers会首先尝试从config.json中读取model_type字段,如果找不到则会尝试通过模型路径名匹配已知模型类型。在GLM-4的微调场景中,由于checkpoint目录结构可能不完整,导致这一机制失效。
通过版本降级有效的根本原因是,较新版本的transformers对模型配置的验证更加严格,而旧版本在这方面的容错性更好。这也提醒我们在使用大型语言模型时,保持整个工具链版本的一致性非常重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00