GLM-4微调后推理报错问题分析与解决方案
2025-06-03 09:50:19作者:袁立春Spencer
问题背景
在使用GLM-4大语言模型进行LoRA微调后,部分用户在运行推理脚本时遇到了CUDA设备端断言错误。错误信息显示概率张量包含了非法值(inf、nan或负数元素),导致模型无法正常生成文本。这是一个典型的微调后推理问题,值得深入分析。
错误现象
用户在完成LoRA微调后,运行推理脚本时出现以下关键错误:
- CUDA设备端断言失败,提示概率张量包含非法值
- 当注释掉do_sample参数后,模型输出变为全"!"符号的无意义文本
- 错误发生在torch.multinomial操作期间
根本原因分析
经过技术验证,该问题主要由以下因素导致:
- PyTorch和Transformers版本不兼容:用户使用的PyTorch 2.5.0与Transformers 4.44.0组合存在兼容性问题
- 混合精度训练问题:使用BF16进行微调但推理时可能产生数值不稳定
- 训练数据问题:小规模数据集(90条)可能导致模型学习不充分
解决方案
推荐方案
-
版本降级:将PyTorch降级至2.4.0,Transformers升级至4.45.0
pip install torch==2.4.0 transformers==4.45.0
-
推理参数调整:
generate_kwargs = { "max_new_tokens": 1024, "do_sample": True, # 必须启用采样 "top_p": 0.8, "temperature": 0.7, "repetition_penalty": 1.2, "eos_token_id": model.config.eos_token_id, }
辅助方案
-
检查训练数据:
- 确保数据质量
- 增加数据量至至少1000条
- 验证数据格式符合要求
-
训练参数调整:
- 降低学习率
- 增加训练步数
- 使用梯度裁剪
技术原理
该问题的核心在于概率分布计算时的数值稳定性。当模型输出的logits包含极端值时,softmax操作会产生inf或nan,导致multinomial采样失败。版本不兼容会放大这种数值不稳定性。
最佳实践建议
- 始终使用经过验证的PyTorch和Transformers版本组合
- 微调时监控loss曲线,确保模型正常收敛
- 推理前先验证模型能否产生合理输出
- 对于小数据集,考虑使用更小的学习率和更多的训练epoch
总结
GLM-4微调后推理问题通常源于环境配置不当或训练过程异常。通过版本控制和参数调整,可以有效解决这类问题。建议用户在微调前充分测试基础环境,并在训练过程中密切监控模型表现,以确保获得理想的微调效果。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp英语课程中动词时态一致性问题的分析与修正2 freeCodeCamp论坛搜索与帖子标题不一致问题的技术分析3 freeCodeCamp课程中卡片设计最佳实践的用户中心化思考4 freeCodeCamp全栈开发课程中冗余描述行的清理优化5 freeCodeCamp全栈开发课程HTML语法检查与内容优化建议6 freeCodeCamp 前端开发实验室:优化调查表单测试断言的最佳实践7 freeCodeCamp贷款资格检查器中的参数验证问题分析8 freeCodeCamp课程内容中的常见拼写错误修正9 freeCodeCamp全栈开发课程中收藏图标切换器的优化建议10 freeCodeCamp课程中关于单选框样式定制的技术解析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133