Google Patents Public Data 项目教程
项目介绍
Google Patents Public Data 是一个开源项目,旨在通过 Google BigQuery 提供专利数据的分析。该项目包含了一系列的 BigQuery 数据库表,这些表来自政府研究和私营公司,用于进行专利数据的统计分析。用户可以使用 SQL 查询这些数据,并结合自己上传的私有数据集进行分析。此外,还可以使用多种兼容的分析工具对数据进行导出和处理。
项目快速启动
环境准备
- 安装 Google Cloud SDK:确保你已经安装了 Google Cloud SDK,并进行了身份验证。
- 启用 BigQuery API:在你的 Google Cloud 项目中启用 BigQuery API。
快速启动代码
以下是一个简单的 SQL 查询示例,用于从 Google Patents Public Data 中检索数据:
SELECT
publication_number,
title,
abstract
FROM
`patents-public-data.patents.publications`
LIMIT
10
将上述代码复制到你的 BigQuery 控制台中运行,即可获取专利数据的部分信息。
应用案例和最佳实践
专利景观分析
专利景观分析是一个自动化过程,用于查找与特定主题相关的专利。基于 Dave Feltenberger 和 Aaron Abood 的论文,该项目提供了一个示例,展示了如何使用初始的专利种子集来发现相关专利。
权利要求文本提取
该项目还提供了一个示例,展示了如何使用 BigQuery 和 Python 交互式地处理专利权利要求文本数据。
权利要求范围模型
这是一个机器学习方法,用于使用 BigQuery 中的数据估计专利权利要求的范围。
典型生态项目
BigQuery
BigQuery 是 Google Cloud 提供的一个完全托管的数据仓库,支持大规模数据分析。它是 Google Patents Public Data 项目的基础,提供了强大的 SQL 查询能力和数据处理能力。
Google Cloud SDK
Google Cloud SDK 是一套工具集,用于与 Google Cloud 服务进行交互。它包括 gcloud、gsutil 和 bq 等命令行工具,是进行云端数据分析的必备工具。
Python
Python 是一种广泛使用的编程语言,特别适合数据分析和机器学习任务。在 Google Patents Public Data 项目中,Python 被用于编写数据处理和分析脚本。
通过以上内容,你可以快速了解并开始使用 Google Patents Public Data 项目进行专利数据分析。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00