ModelContextProtocol C SDK 中工具调用与进度令牌的深度解析
背景与现状
在ModelContextProtocol C# SDK的使用过程中,开发者们发现了一个值得探讨的技术点:如何在通过IChatClient接口调用工具时,灵活地添加进度令牌(ProgressToken)等元数据信息。当前SDK提供了两种主要的工具调用方式:
-
底层直接调用:通过SendRequestAsync方法直接发送JsonRpcRequest请求,这种方式可以完全控制请求参数,包括添加Meta信息如ProgressToken。
-
高级封装调用:通过IChatClient接口和ListToolsAsync获取的工具实例进行调用,这种方式更加简洁但缺乏对调用参数的细粒度控制。
技术挑战
核心问题在于高级封装调用方式中,McpClientTool类的设计没有提供足够的扩展点来定制工具调用行为。具体表现在:
- 工具调用参数被封装在内部,无法添加自定义元数据
- 工具实例的创建过程固定,缺乏注入自定义逻辑的机制
- 现有设计更注重简单性而非扩展性
解决方案探讨
开发团队和社区成员提出了几种可能的改进方向:
1. 属性注入模式
通过添加WithMeta()等链式方法,允许在工具调用前设置元数据。这种方式的优点是:
- 保持API的流畅性
- 向后兼容现有代码
- 直观易用
但缺点是可能导致类的方法不断膨胀,维护成本增加。
2. 工厂模式
引入ToolFactory委托或接口,允许自定义工具实例的创建过程。这种方案的优点包括:
- 高度灵活性
- 单一职责原则
- 易于扩展新功能
3. 继承扩展
将McpClientTool设计为可继承的,让开发者可以创建自定义工具类。这种传统OOP方式的优势是:
- 符合C#开发习惯
- 完全控制工具行为
- 清晰的类型系统
最佳实践建议
基于技术讨论,对于需要使用进度令牌等高级功能的场景,目前推荐以下实践:
-
简单场景:直接使用底层SendRequestAsync方法,完全控制调用参数。
-
复杂场景:创建自定义AIFunction派生类,实现特定的调用逻辑。
-
通用场景:等待SDK未来版本可能提供的工厂机制或扩展点。
设计原则反思
这一技术讨论引发了对SDK设计原则的深入思考:
-
简单性与扩展性的平衡:SDK需要在易用性和灵活性之间找到合适的平衡点。
-
协议层与应用层的分离:明确区分协议规范定义的功能和应用层需要的便利功能。
-
演进式设计:随着使用场景的丰富,逐步添加必要的扩展机制,而非一次性过度设计。
未来展望
ModelContextProtocol C# SDK作为一个新兴项目,这类技术讨论有助于其健康成长。开发者可以期待:
- 更灵活的扩展机制
- 更清晰的架构分层
- 更丰富的示例和文档
通过社区和核心团队的共同努力,SDK将能够更好地满足各种复杂场景下的开发需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C068
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00