ModelContextProtocol C SDK 中工具调用与进度令牌的深度解析
背景与现状
在ModelContextProtocol C# SDK的使用过程中,开发者们发现了一个值得探讨的技术点:如何在通过IChatClient接口调用工具时,灵活地添加进度令牌(ProgressToken)等元数据信息。当前SDK提供了两种主要的工具调用方式:
-
底层直接调用:通过SendRequestAsync方法直接发送JsonRpcRequest请求,这种方式可以完全控制请求参数,包括添加Meta信息如ProgressToken。
-
高级封装调用:通过IChatClient接口和ListToolsAsync获取的工具实例进行调用,这种方式更加简洁但缺乏对调用参数的细粒度控制。
技术挑战
核心问题在于高级封装调用方式中,McpClientTool类的设计没有提供足够的扩展点来定制工具调用行为。具体表现在:
- 工具调用参数被封装在内部,无法添加自定义元数据
- 工具实例的创建过程固定,缺乏注入自定义逻辑的机制
- 现有设计更注重简单性而非扩展性
解决方案探讨
开发团队和社区成员提出了几种可能的改进方向:
1. 属性注入模式
通过添加WithMeta()等链式方法,允许在工具调用前设置元数据。这种方式的优点是:
- 保持API的流畅性
- 向后兼容现有代码
- 直观易用
但缺点是可能导致类的方法不断膨胀,维护成本增加。
2. 工厂模式
引入ToolFactory委托或接口,允许自定义工具实例的创建过程。这种方案的优点包括:
- 高度灵活性
- 单一职责原则
- 易于扩展新功能
3. 继承扩展
将McpClientTool设计为可继承的,让开发者可以创建自定义工具类。这种传统OOP方式的优势是:
- 符合C#开发习惯
- 完全控制工具行为
- 清晰的类型系统
最佳实践建议
基于技术讨论,对于需要使用进度令牌等高级功能的场景,目前推荐以下实践:
-
简单场景:直接使用底层SendRequestAsync方法,完全控制调用参数。
-
复杂场景:创建自定义AIFunction派生类,实现特定的调用逻辑。
-
通用场景:等待SDK未来版本可能提供的工厂机制或扩展点。
设计原则反思
这一技术讨论引发了对SDK设计原则的深入思考:
-
简单性与扩展性的平衡:SDK需要在易用性和灵活性之间找到合适的平衡点。
-
协议层与应用层的分离:明确区分协议规范定义的功能和应用层需要的便利功能。
-
演进式设计:随着使用场景的丰富,逐步添加必要的扩展机制,而非一次性过度设计。
未来展望
ModelContextProtocol C# SDK作为一个新兴项目,这类技术讨论有助于其健康成长。开发者可以期待:
- 更灵活的扩展机制
- 更清晰的架构分层
- 更丰富的示例和文档
通过社区和核心团队的共同努力,SDK将能够更好地满足各种复杂场景下的开发需求。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0313- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









