InternLM2模型在TensorRT-LLM中的支持现状与未来展望
TensorRT-LLM作为NVIDIA推出的高性能推理引擎,能够显著提升大语言模型在NVIDIA GPU上的推理效率。近期,开源社区对InternLM2模型在TensorRT-LLM中的支持情况表现出了浓厚兴趣。
目前TensorRT-LLM已经支持了第一代InternLM模型,但尚未原生支持InternLM2。根据官方开发团队的回复,他们计划在2024年3月底或4月初为InternLM2添加TensorRT-LLM的正式支持。
对于急需在TensorRT-LLM上运行InternLM2的用户,开发团队提供了一个过渡方案:可以将InternLM2模型结构转换为Llama架构,然后使用TensorRT-LLM现有的Llama支持来创建推理引擎。这种转换需要使用专门的模型转换工具,该工具能够处理模型架构的差异,确保转换后的模型保持原始模型的语义和性能特征。
从技术角度来看,这种架构转换方案之所以可行,是因为InternLM2和Llama在某些关键架构设计上具有相似性,如都采用了Transformer解码器结构。转换过程主要涉及调整模型层的组织方式和参数命名,以适应目标框架的预期格式。
值得注意的是,社区中已经有开发者提交了为InternLM2添加原生TensorRT-LLM支持的Pull Request,这表明社区对该功能的强烈需求。原生支持将避免转换步骤带来的潜在性能损失和复杂度,提供更直接的优化路径。
对于关注模型推理性能的用户来说,等待原生支持可能是更优选择,因为这将允许TensorRT-LLM的优化器针对InternLM2的特定架构进行深度优化,包括算子融合、内存布局优化等高级技术,从而最大化推理性能。
随着大模型推理需求的增长,框架间的互操作性和性能优化变得越来越重要。InternLM2与TensorRT-LLM的集成进展值得持续关注,这将为需要高性能推理的用户提供更多选择。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00