Qwen1.5模型在vLLM部署中的Token统计方法解析
2025-05-12 20:32:17作者:段琳惟
在大型语言模型的实际应用中,准确统计Token数量对于监控资源使用、计费结算和性能优化都至关重要。本文将深入探讨在vLLM框架下部署Qwen1.5模型时,如何正确统计流式输出和非流式输出的Token数量。
Token统计的基本原理
Token统计的核心在于理解模型如何处理输入和输出。对于Qwen1.5这样的现代大语言模型,Token统计需要考虑以下几个关键因素:
- 输入Token化:将用户查询转换为模型可理解的Token序列
- 对话模板处理:应用特定的对话格式模板
- 输出Token化:将模型生成的响应转换为Token序列
- 特殊Token处理:包括开始/结束标记等
非流式输出的Token统计
在非流式输出场景下,vLLM会返回完整的响应结果,同时附带Token使用统计信息。这种模式下可以直接从API响应中获取准确的Token计数:
result = client.chat.completions.create(
messages=[{"role": "user", "content": "你的问题"}],
model="qwen1.5"
)
input_tokens = result.usage.prompt_tokens
output_tokens = result.usage.completion_tokens
这种方法简单直接,适用于大多数非实时场景。
流式输出的Token统计挑战
流式输出场景更为复杂,因为响应是分块返回的。在vLLM的实现中:
- 响应以Token为单位逐步返回
- Token使用统计信息通常包含在倒数第二个数据块中
- 当前版本的LangChain ChatOpenAI实现尚未完全支持流式Token统计
正确的Token统计方法
对于Qwen1.5模型,推荐使用以下方法进行准确的Token统计:
- 初始化Tokenizer:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B")
- 输入Token统计:
prompt_tokens = len(tokenizer.apply_chat_template(
{"messages": [{"role": "user", "content": query}]},
add_generation_prompt=True,
tokenize=True
).input_ids)
- 输出Token统计:
completion_tokens = len(tokenizer(response).input_ids) + 1
实际应用建议
- 对于生产环境,建议实现自定义的Token计数器,而非依赖特定框架的返回结果
- 注意不同模型版本可能使用不同的Tokenizer,确保使用与模型匹配的Tokenizer
- 考虑缓存Tokenization结果以提高性能
- 对于流式输出,可以累计每个返回块的Token数量作为实时统计方案
性能优化考虑
Token统计操作本身会带来一定的计算开销,特别是在高并发场景下。可以考虑以下优化策略:
- 对常见查询实现缓存机制
- 在边缘计算节点上进行Token统计
- 使用近似统计方法在需要极高吞吐量的场景
通过以上方法,开发者可以在vLLM框架下准确统计Qwen1.5模型的Token使用情况,为资源监控和成本控制提供可靠依据。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134