Halide项目中Tensor Product操作的GPU共享内存优化实践
2025-06-04 16:25:12作者:董斯意
概述
在GPU编程中,合理利用共享内存是提升性能的关键技术之一。本文将以Halide项目中一个Tensor Product操作为例,深入探讨如何优化共享内存的使用方式,解决实际开发中遇到的内存分配过大问题。
问题背景
Tensor Product操作是深度学习中的基础运算,涉及输入数据的收集(Gather)和结果的分散(Scatter)。在GPU实现中,我们期望通过以下方式优化性能:
- 将中间乘积结果(product)存储在4x1的寄存器块中
- 将权重数据(gather_weight)加载到共享内存,以便线程间复用
初始实现分析
初始的Halide实现中,我们尝试将gather_weight函数计算安排在product函数的c1循环级别,并指定使用GPU共享内存:
(gather_weight
.compute_at(product, c1)
.store_in(hl.MemoryType.GPUShared)
)
然而,实际生成的代码显示共享内存分配达到了16384个元素,远超过预期的512个(m1(32) x c0(16))。分析发现,Halide未能识别到gather_weight可以在p1维度的线程间复用,导致分配了m1 x c0 x p1大小的共享内存。
优化尝试与发现
我们调整了调度策略,将gather_weight的计算提升到output函数的m级别:
(gather_weight
.compute_at(output, m)
.store_in(hl.MemoryType.GPUShared)
.split(c, wc1, wc0, 16)
.split(m, m1, m0, 32)
.gpu_threads(m0, wc0)
)
这一调整带来了以下改进:
- 共享内存使用降至2048个元素
- 仅使用部分线程(thread_id_y < 16)加载数据到共享内存
- 通过gpu_thread_barrier确保数据同步
深入优化方向
虽然优化取得了一定效果,但仍有进一步改进空间:
- 动态共享内存分配:理想情况是在c1循环内部分配m0 x c0大小的共享内存块,随循环迭代复用
- 加载线程优化:可以进一步减少参与数据加载的线程数量,提高效率
- 内存访问模式:优化共享内存的布局以减少bank conflict
技术要点总结
- 计算位置选择:在Halide中,compute_at的位置选择直接影响内存分配范围和线程行为
- 线程协作:GPU编程中需要合理设计线程协作模式,平衡计算和内存访问
- 内存层次:理解寄存器、共享内存和全局内存的特性对性能优化至关重要
实践建议
对于类似场景的优化,建议采用以下步骤:
- 明确计算的数据依赖关系
- 分析各阶段的内存访问模式
- 逐步调整compute_at位置,观察内存分配变化
- 合理设计线程网格和块大小
- 使用屏障确保内存访问同步
通过这种系统化的方法,可以有效解决Halide在GPU编程中的内存优化挑战。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136