Spark Operator中实现混合Spot与按需实例的Executor调度策略
在Kubernetes环境中运行Spark作业时,资源成本优化是一个重要考量。本文将深入探讨在Spark Operator项目中实现混合使用Spot实例和按需(On-Demand)实例的Executor调度方案。
背景与需求
现代大数据处理平台通常需要平衡成本与可靠性。AWS Spot实例可以提供显著的成本节约(通常比按需实例低60-90%),但存在被中断的风险。而按需实例虽然价格较高,但能提供稳定的计算资源。
用户希望在使用Spark Operator时能够灵活配置Executor在不同类型节点上的分布比例,例如40%的Executor运行在Spot实例上以降低成本,60%运行在按需实例上保证关键任务的稳定性。
技术挑战分析
Spark on Kubernetes的现有架构存在以下限制:
-
统一配置限制:Spark的Executor配置是全局性的,所有Executor共享相同的节点选择器(NodeSelector)配置,无法为不同Executor指定不同的调度策略。
-
核心架构限制:Spark核心的Kubernetes后端不支持Executor分组或舰队(Fleet)概念,缺乏对不同类型Executor的差异化调度能力。
-
Operator功能缺口:当前Spark Operator不支持拓扑分布约束(Topology Spread Constraints),这使得在节点层面均衡分配Executor变得困难。
潜在解决方案探讨
方案一:节点组混合配置
在AWS环境中,可以通过配置Auto Scaling组实现:
- 创建混合实例组,指定Spot和按需实例的比例
- 依赖Kubernetes调度器自动分配Pod到不同节点
- 优点:无需修改Spark或Operator代码
- 缺点:无法精确控制每个Executor类型的具体数量
方案二:Karpenter智能调度
使用Karpenter等高级调度器可以实现:
- 通过配置实现Spot与按需实例的自动比例分配
- 结合拓扑分布约束确保工作负载均衡
- 需要Operator支持拓扑约束配置
- 当前需要等待功能增强
方案三:自定义StatefulSet方案
完全绕过Operator,采用自定义方案:
- 为不同类型Executor创建独立的StatefulSet
- 每个StatefulSet配置不同的节点选择器
- 需要自行管理Spark集群状态
- 增加了运维复杂度
架构演进建议
从长远来看,最合理的架构演进方向是:
- 增强Spark核心:在Spark Kubernetes后端支持Executor分组概念
- 扩展Operator功能:增加对拓扑约束和多配置模板的支持
- 分层调度策略:实现资源请求与节点类型的动态匹配
实施考量
在具体实施时需要考虑:
- 资源保障机制:确保关键Executor能够获得所需资源
- 优雅降级能力:当Spot实例不可用时自动回退
- 成本监控体系:实时跟踪不同资源类型的消耗情况
- 作业特性适配:根据作业特点调整资源分配策略
总结
实现Spark Executor在Spot与按需实例上的灵活调度是一个涉及多层面的技术挑战。当前可通过基础设施层面的混合节点组暂时满足基本需求,但完整的解决方案需要Spark核心和Operator的协同演进。未来随着Kubernetes调度能力的不断增强和Spark架构的持续优化,这一领域将出现更多创新的解决方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00