从dev-notes项目学习广度优先搜索(BFS)算法
2025-06-19 11:57:35作者:鲍丁臣Ursa
广度优先搜索(Breadth-First Search,简称BFS)是一种用于遍历或搜索树或图的算法,它从根节点开始,先访问所有相邻节点,再逐层向外扩展。本文将深入解析BFS算法的原理、实现和应用场景。
BFS算法核心概念
BFS算法采用队列(Queue)数据结构来实现,其核心思想是"先访问的节点先扩展"。与深度优先搜索(DFS)不同,BFS会先访问当前节点的所有邻居节点,然后再访问这些邻居节点的邻居节点,以此类推。
算法特点
- 不需要根节点的概念,可以从图中任意节点开始
- 使用队列来管理待访问节点
- 天然适合寻找最短路径问题
- 可以用于检测图中的环
BFS算法执行步骤
- 初始化队列:将起始节点加入队列
- 标记访问:取出队列首部节点并标记为已访问
- 处理邻居:检查该节点的所有邻居节点
- 入队未访问节点:将所有未被访问的邻居节点加入队列
- 重复过程:直到队列为空,算法结束
BFS时间复杂度分析
BFS的时间复杂度取决于图的类型:
- 有向图:O(V + E),其中V是顶点数,E是边数
- 无向图:O(V + 2E),因为每条边会被处理两次
BFS具有线性时间复杂度,在大多数实际应用中效率很高。
BFS应用场景
- 最短路径查找:在无权图中寻找两点间最短路径
- 社交网络分析:查找人与人之间的最短连接路径
- 网络爬虫:按层级抓取网页
- 迷宫求解:寻找从起点到终点的最短路径
- 连通性检测:判断图中所有节点是否连通
JavaScript实现示例
以下是一个完整的BFS实现示例,计算从根节点到其他所有节点的距离:
function bfs(graph, root) {
// 初始化距离对象,所有节点初始距离设为Infinity
let distances = {};
for (let i = 0; i < graph.length; i++) {
distances[i] = Infinity;
}
// 根节点距离设为0
distances[root] = 0;
// 创建队列并初始化
let queue = [root];
let current;
while (queue.length !== 0) {
current = queue.shift(); // 取出队列首部节点
// 找出当前节点的所有邻居
let connectedToCurrent = graph[current];
let neighborIds = [];
let ids = connectedToCurrent.indexOf(1);
while (ids !== -1) {
neighborIds.push(ids);
ids = connectedToCurrent.indexOf(1, ids + 1);
}
// 处理每个邻居节点
for (let j = 0; j < neighborIds.length; j++) {
if (distances[neighborIds[j]] === Infinity) {
distances[neighborIds[j]] = distances[current] + 1;
queue.push(neighborIds[j]);
}
}
}
return distances;
}
// 示例图数据结构
var graph = [
[0, 1, 2, 0, 0], // 节点0的连接情况
[1, 0, 0, 0, 0], // 节点1的连接情况
[1, 0, 0, 0, 0], // 节点2的连接情况
[0, 0, 0, 0, 0], // 节点3的连接情况
[0, 0, 0, 0, 0] // 节点4的连接情况
];
console.log(bfs(graph, 1));
// 输出: { '0': 1, '1': 0, '2': Infinity, '3': Infinity, '4': Infinity }
代码解析
- 初始化阶段:创建距离对象,所有节点初始距离设为Infinity,表示不可达
- 根节点设置:将根节点距离设为0
- 队列处理:使用队列管理待处理节点,确保按层级顺序访问
- 邻居查找:通过邻接矩阵查找当前节点的所有邻居
- 距离更新:对于每个未访问的邻居节点,更新其距离并入队
实际应用建议
- 性能优化:对于大型图,可以考虑使用更高效的数据结构如链表实现队列
- 内存考虑:BFS可能需要存储大量中间节点,对于极大规模图可能不适用
- 变体应用:双向BFS可以进一步提高搜索效率,特别适合已知起点和终点的场景
BFS算法是图论中的基础算法,理解其原理和实现对于解决许多实际问题至关重要。通过本文的讲解和代码示例,希望读者能够掌握BFS的核心思想并能在实际项目中灵活应用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
644
149
Ascend Extension for PyTorch
Python
204
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
284
React Native鸿蒙化仓库
JavaScript
249
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
634
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873