从dev-notes项目学习广度优先搜索(BFS)算法
2025-06-19 10:43:38作者:鲍丁臣Ursa
广度优先搜索(Breadth-First Search,简称BFS)是一种用于遍历或搜索树或图的算法,它从根节点开始,先访问所有相邻节点,再逐层向外扩展。本文将深入解析BFS算法的原理、实现和应用场景。
BFS算法核心概念
BFS算法采用队列(Queue)数据结构来实现,其核心思想是"先访问的节点先扩展"。与深度优先搜索(DFS)不同,BFS会先访问当前节点的所有邻居节点,然后再访问这些邻居节点的邻居节点,以此类推。
算法特点
- 不需要根节点的概念,可以从图中任意节点开始
- 使用队列来管理待访问节点
- 天然适合寻找最短路径问题
- 可以用于检测图中的环
BFS算法执行步骤
- 初始化队列:将起始节点加入队列
- 标记访问:取出队列首部节点并标记为已访问
- 处理邻居:检查该节点的所有邻居节点
- 入队未访问节点:将所有未被访问的邻居节点加入队列
- 重复过程:直到队列为空,算法结束
BFS时间复杂度分析
BFS的时间复杂度取决于图的类型:
- 有向图:O(V + E),其中V是顶点数,E是边数
- 无向图:O(V + 2E),因为每条边会被处理两次
BFS具有线性时间复杂度,在大多数实际应用中效率很高。
BFS应用场景
- 最短路径查找:在无权图中寻找两点间最短路径
- 社交网络分析:查找人与人之间的最短连接路径
- 网络爬虫:按层级抓取网页
- 迷宫求解:寻找从起点到终点的最短路径
- 连通性检测:判断图中所有节点是否连通
JavaScript实现示例
以下是一个完整的BFS实现示例,计算从根节点到其他所有节点的距离:
function bfs(graph, root) {
// 初始化距离对象,所有节点初始距离设为Infinity
let distances = {};
for (let i = 0; i < graph.length; i++) {
distances[i] = Infinity;
}
// 根节点距离设为0
distances[root] = 0;
// 创建队列并初始化
let queue = [root];
let current;
while (queue.length !== 0) {
current = queue.shift(); // 取出队列首部节点
// 找出当前节点的所有邻居
let connectedToCurrent = graph[current];
let neighborIds = [];
let ids = connectedToCurrent.indexOf(1);
while (ids !== -1) {
neighborIds.push(ids);
ids = connectedToCurrent.indexOf(1, ids + 1);
}
// 处理每个邻居节点
for (let j = 0; j < neighborIds.length; j++) {
if (distances[neighborIds[j]] === Infinity) {
distances[neighborIds[j]] = distances[current] + 1;
queue.push(neighborIds[j]);
}
}
}
return distances;
}
// 示例图数据结构
var graph = [
[0, 1, 2, 0, 0], // 节点0的连接情况
[1, 0, 0, 0, 0], // 节点1的连接情况
[1, 0, 0, 0, 0], // 节点2的连接情况
[0, 0, 0, 0, 0], // 节点3的连接情况
[0, 0, 0, 0, 0] // 节点4的连接情况
];
console.log(bfs(graph, 1));
// 输出: { '0': 1, '1': 0, '2': Infinity, '3': Infinity, '4': Infinity }
代码解析
- 初始化阶段:创建距离对象,所有节点初始距离设为Infinity,表示不可达
- 根节点设置:将根节点距离设为0
- 队列处理:使用队列管理待处理节点,确保按层级顺序访问
- 邻居查找:通过邻接矩阵查找当前节点的所有邻居
- 距离更新:对于每个未访问的邻居节点,更新其距离并入队
实际应用建议
- 性能优化:对于大型图,可以考虑使用更高效的数据结构如链表实现队列
- 内存考虑:BFS可能需要存储大量中间节点,对于极大规模图可能不适用
- 变体应用:双向BFS可以进一步提高搜索效率,特别适合已知起点和终点的场景
BFS算法是图论中的基础算法,理解其原理和实现对于解决许多实际问题至关重要。通过本文的讲解和代码示例,希望读者能够掌握BFS的核心思想并能在实际项目中灵活应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C026
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
423
3.25 K
Ascend Extension for PyTorch
Python
231
262
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869