IREE项目中tensor.extract_slice与tensor.expand_shape操作优化分析
2025-06-26 21:15:07作者:段琳惟
在IREE编译器优化过程中,我们经常会遇到需要优化张量操作序列的情况。本文将深入分析一个特定的优化模式——如何有效地将tensor.expand_shape操作通过tensor.extract_slice操作进行"冒泡"(bubble up)优化。
问题背景
在IREE的DispatchCreation阶段,存在一个名为BubbleExpandThroughExtract的优化模式。该模式的核心目标是将extract_slice -> expand_shape的操作序列转换为expand_shape -> extract_slice的顺序。这种转换的主要优势在于可以将extract_slice操作克隆到其消费者dispatch中,当extract_slice操作不连续时,可以避免产生缓慢的内存拷贝操作。
当前优化限制
当前的优化实现有以下两个主要限制条件:
extract_slice操作不能修改那些被expand_shape扩展的维度extract_slice操作必须是完全静态的
这些限制导致了许多潜在的优化机会被错过。例如,考虑以下两种情况:
// 可优化的情况
util.func public @possible(%arg0 : tensor<4096xf16>) -> (tensor<32x64xf16>) {
%extracted_slice = tensor.extract_slice %arg0[0] [2048] [1] : tensor<4096xf16> to tensor<2048xf16>
%expanded_239 = tensor.expand_shape %extracted_slice[[0, 1]] output_shape [32, 64] : tensor<2048xf16> into tensor<32x64xf16>
util.return %expanded_239 : tensor<32x64xf16>
}
// 不可优化的情况
util.func public @impossible(%arg0 : tensor<2049xf16>) -> (tensor<32x64xf16>) {
%extracted_slice= tensor.extract_slice %arg0[0] [2048] [1] : tensor<2049xf16> to tensor<2048xf16>
%expanded_239 = tensor.expand_shape %extracted_slice[[0, 1]] output_shape [32, 64] : tensor<2048xf16> into tensor<32x64xf16>
util.return %expanded_239 : tensor<32x64xf16>
}
优化条件分析
经过深入分析,我们发现这类优化的关键条件是:除最后一个输出维度外,所有其他输出维度的乘积必须能够整除输入(提取前)的形状。具体来说:
- 在第一个例子中,32(第一个输出维度)能够整除4096(输入形状),因此优化是可行的
- 在第二个例子中,32不能整除2049,因此优化不可行
动态形状处理
在实际应用中,我们还需要考虑动态形状的情况。例如:
util.func public @main(%arg0 : tensor<?xf16>, %val : index) -> (tensor<32x?xf16>) {
%extracted_slice = tensor.extract_slice %arg0[0] [%val] [1] : tensor<?xf16> to tensor<?xf16>
%cst32 = arith.constant 32 : index
%div = arith.divsi %val, %cst32 : index
%expanded_239 = tensor.expand_shape %extracted_slice[[0, 1]] output_shape [32, %div] : tensor<?xf16> into tensor<32x?xf16>
util.return %expanded_239 : tensor<32x?xf16>
}
对于动态形状,我们需要确保输入张量的动态维度能够被扩展后的第一个维度(这里是32)整除。这通常需要在编译时通过形状推导或约束求解来验证。
实际应用案例
在实际的模型编译中,我们可能会遇到更复杂的多维情况:
%extracted_slice_446 = tensor.extract_slice %expanded_444
[0, 31, 0, 0, 0, 0]
[%9, 1, 1, 8, 32, 128]
[1, 1, 1, 1, 1, 1]
: tensor<?x32x2x8x32x128xf8E4M3FNUZ> to tensor<?x8x32x128xf8E4M3FNUZ>
%expanded_447 = tensor.expand_shape %extracted_slice_446
[[0], [1], [2], [3, 4]]
output_shape [%9, 8, 32, 2, 64]
: tensor<?x8x32x128xf8E4M3FNUZ> into tensor<?x8x32x2x64xf8E4M3FNUZ>
在这种情况下,优化需要考虑多个维度的交互关系,确保在维度重组后,切片操作仍然能够保持数学上的等价性。
优化实现建议
基于上述分析,我们可以提出以下优化实现策略:
- 放宽静态限制,支持动态形状的优化
- 引入维度整除性验证机制,确保数学等价性
- 开发更通用的维度关系分析工具,处理多维情况
- 在优化前进行充分的形状推导和约束验证
通过这些改进,可以显著提高IREE编译器在处理复杂张量操作序列时的优化能力,从而生成更高效的代码。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210