IREE项目中VAE模型编译失败问题分析与解决方案
2025-06-26 17:14:03作者:晏闻田Solitary
问题背景
在IREE编译器处理变分自编码器(VAE)模型时,当启用激进融合优化选项(--iree-dispatch-creation-enable-aggressive-fusion)时,会出现编译失败的情况。错误信息显示共享内存使用量超过了硬件限制(1048704字节超过了65536字节的限制)。
问题现象
编译失败发生在GPU资源使用检查阶段(GPUCheckResourceUsagePass),具体表现为一个巨大的内存分配操作:
%alloc = memref.alloc() : memref<1x262144xf32, #gpu.address_space<workgroup>>
技术分析
1. 融合优化前后的差异
未启用激进融合时:
- 生成2个独立的dispatch函数
- 每个dispatch包含2个linalg.generic操作
- 内存使用在合理范围内
启用激进融合后:
- 生成1个融合后的dispatch函数
- 包含4个linalg.generic操作
- 产生了过大的内存分配请求
2. 根本原因
问题根源在于IREE的tileDispatchUsingForall转换过程中存在局限性。具体表现为:
- 在scf.forall循环内部,系统没有正确使用迭代参数的提取切片,而是创建了新的tensor.empty操作
- 对于softmax操作与元素级操作的融合模式,现有的优化管道未能正确处理
- 缺少必要的额外平铺(tiling)层级,导致内存需求超出硬件限制
解决方案
开发团队通过以下方式解决了这个问题:
-
增强元素级操作融合:在DecomposeSoftmax.cpp中添加了专门的融合模式处理,特别是针对softmax操作与后续元素级操作的融合场景
-
优化内存分配策略:确保在循环内部重用已有的内存分配,而不是创建新的分配
-
完善平铺策略:为需要大内存的操作添加额外的平铺层级,确保内存使用在硬件限制范围内
技术启示
-
融合优化的平衡:虽然操作融合可以减少内核启动开销和提高数据局部性,但需要考虑内存使用约束
-
硬件限制意识:编译器优化必须考虑目标硬件的具体限制,如共享内存大小
-
模式识别重要性:针对特定计算模式(如softmax)的专门优化往往能带来更好的效果
这个问题展示了深度学习编译器在优化复杂模型时面临的挑战,也体现了IREE团队在解决实际问题时的技术深度。通过这种针对性的优化,IREE能够更好地支持各种深度学习模型的部署需求。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137