NeMo-text-processing 项目教程
1. 项目介绍
NeMo-text-processing 是一个用于文本规范化(Text Normalization)和逆文本规范化(Inverse Text Normalization)的 Python 包。该项目主要用于自动语音识别(ASR)和文本到语音合成(TTS)系统中,帮助将非标准化的文本转换为标准化的文本格式,或者将标准化的文本转换回非标准化的格式。
2. 项目快速启动
安装
使用 Conda 虚拟环境
推荐使用 Conda 创建一个新的虚拟环境来安装 NeMo-text-processing:
conda create --name nemo_tn python==3.10
conda activate nemo_tn
安装 PyTorch(可选)
如果需要使用混合文本规范化功能,请安装 PyTorch:
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
使用 Pip 安装
使用以下命令安装最新发布的版本:
pip install nemo_text_processing
快速启动示例
以下是一个简单的示例,展示如何使用 NeMo-text-processing 进行文本规范化:
from nemo_text_processing.text_normalization import Normalizer
# 初始化规范化器
normalizer = Normalizer(input_case='cased')
# 输入文本
input_text = "I have $1,234.56 in my bank account."
# 进行文本规范化
normalized_text = normalizer.normalize(input_text)
print(normalized_text)
3. 应用案例和最佳实践
应用案例
自动语音识别(ASR)
在 ASR 系统中,文本规范化可以将口语化的文本转换为标准化的文本格式,从而提高语音识别的准确性。例如,将 "I have $1,234.56" 转换为 "I have one thousand two hundred thirty four dollars and fifty six cents"。
文本到语音合成(TTS)
在 TTS 系统中,逆文本规范化可以将标准化的文本转换回口语化的格式,使得生成的语音更加自然。例如,将 "I have one thousand two hundred thirty four dollars and fifty six cents" 转换为 "I have $1,234.56"。
最佳实践
- 数据预处理:在进行文本规范化之前,确保输入文本已经过基本的清理和预处理,以提高规范化效果。
- 自定义规则:根据具体应用场景,可以自定义文本规范化规则,以满足特定需求。
- 性能优化:在生产环境中,考虑使用批处理和并行处理技术,以提高文本规范化的处理速度。
4. 典型生态项目
NeMo
NeMo 是 NVIDIA 开发的一个用于构建和训练对话式 AI 模型的开源框架。NeMo-text-processing 是 NeMo 生态系统的一部分,专门用于处理文本规范化问题。
Pynini
Pynini 是一个用于构建和应用有限状态转换器(FST)的 Python 库。NeMo-text-processing 依赖于 Pynini 来实现高效的文本规范化功能。
PyTorch
PyTorch 是一个广泛使用的深度学习框架,支持 GPU 加速计算。NeMo-text-processing 可以与 PyTorch 结合使用,以实现更高效的文本处理和模型训练。
通过这些生态项目的结合,NeMo-text-processing 可以为开发者提供一个完整的解决方案,用于构建和优化 ASR 和 TTS 系统。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00