NeMo-text-processing 项目教程
1. 项目介绍
NeMo-text-processing 是一个用于文本规范化(Text Normalization)和逆文本规范化(Inverse Text Normalization)的 Python 包。该项目主要用于自动语音识别(ASR)和文本到语音合成(TTS)系统中,帮助将非标准化的文本转换为标准化的文本格式,或者将标准化的文本转换回非标准化的格式。
2. 项目快速启动
安装
使用 Conda 虚拟环境
推荐使用 Conda 创建一个新的虚拟环境来安装 NeMo-text-processing:
conda create --name nemo_tn python==3.10
conda activate nemo_tn
安装 PyTorch(可选)
如果需要使用混合文本规范化功能,请安装 PyTorch:
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
使用 Pip 安装
使用以下命令安装最新发布的版本:
pip install nemo_text_processing
快速启动示例
以下是一个简单的示例,展示如何使用 NeMo-text-processing 进行文本规范化:
from nemo_text_processing.text_normalization import Normalizer
# 初始化规范化器
normalizer = Normalizer(input_case='cased')
# 输入文本
input_text = "I have $1,234.56 in my bank account."
# 进行文本规范化
normalized_text = normalizer.normalize(input_text)
print(normalized_text)
3. 应用案例和最佳实践
应用案例
自动语音识别(ASR)
在 ASR 系统中,文本规范化可以将口语化的文本转换为标准化的文本格式,从而提高语音识别的准确性。例如,将 "I have $1,234.56" 转换为 "I have one thousand two hundred thirty four dollars and fifty six cents"。
文本到语音合成(TTS)
在 TTS 系统中,逆文本规范化可以将标准化的文本转换回口语化的格式,使得生成的语音更加自然。例如,将 "I have one thousand two hundred thirty four dollars and fifty six cents" 转换为 "I have $1,234.56"。
最佳实践
- 数据预处理:在进行文本规范化之前,确保输入文本已经过基本的清理和预处理,以提高规范化效果。
- 自定义规则:根据具体应用场景,可以自定义文本规范化规则,以满足特定需求。
- 性能优化:在生产环境中,考虑使用批处理和并行处理技术,以提高文本规范化的处理速度。
4. 典型生态项目
NeMo
NeMo 是 NVIDIA 开发的一个用于构建和训练对话式 AI 模型的开源框架。NeMo-text-processing 是 NeMo 生态系统的一部分,专门用于处理文本规范化问题。
Pynini
Pynini 是一个用于构建和应用有限状态转换器(FST)的 Python 库。NeMo-text-processing 依赖于 Pynini 来实现高效的文本规范化功能。
PyTorch
PyTorch 是一个广泛使用的深度学习框架,支持 GPU 加速计算。NeMo-text-processing 可以与 PyTorch 结合使用,以实现更高效的文本处理和模型训练。
通过这些生态项目的结合,NeMo-text-processing 可以为开发者提供一个完整的解决方案,用于构建和优化 ASR 和 TTS 系统。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00