NeMo Text Processing:文本规范化与反规范化的利器
2024-09-26 23:43:21作者:俞予舒Fleming
项目介绍
nemo-text-processing 是一个由 NVIDIA 开发的 Python 包,专注于文本规范化(Text Normalization)和反规范化(Inverse Text Normalization)。无论是语音识别后的文本处理,还是自然语言生成前的预处理,nemo-text-processing 都能提供强大的支持。通过简单的 API 调用,开发者可以轻松实现文本的规范化与反规范化,极大地简化了文本处理流程。
项目技术分析
nemo-text-processing 的核心技术基于加权有限状态转换器(Weighted Finite-State Transducer, WFST),这是一种高效的文本处理工具,特别适用于大规模的文本规范化任务。此外,项目还支持混合文本规范化(Hybrid Text Normalization),结合了规则引擎和机器学习模型的优势,能够在保证准确性的同时,提高处理速度。
项目及技术应用场景
nemo-text-processing 的应用场景非常广泛,主要包括:
- 语音识别后处理:在语音识别系统中,识别出的文本通常需要进行规范化处理,以确保文本的格式统一。
- 自然语言生成:在生成文本之前,对输入文本进行规范化处理,可以提高生成文本的质量。
- 数据清洗:在数据预处理阶段,文本规范化可以帮助清洗和标准化数据,提高数据质量。
- 多语言支持:项目支持多种语言的文本处理,适用于全球化的应用场景。
项目特点
- 高效性:基于 WFST 技术,
nemo-text-processing能够高效处理大规模文本数据。 - 灵活性:支持混合文本规范化,可以根据具体需求选择不同的处理方式。
- 易用性:提供简洁的 API 接口,开发者可以快速上手,无需深入了解底层技术细节。
- 多平台支持:虽然主要支持 Linux 系统,但通过 Conda 安装,也可以在 MacOS 和 Windows 上使用。
- 开源社区支持:项目开源,社区活跃,开发者可以轻松获取帮助或贡献代码。
如何开始
安装
推荐使用 Conda 虚拟环境进行安装:
conda create --name nemo_tn python==3.10
conda activate nemo_tn
pip install nemo_text_processing
快速入门
通过 Google Collab Notebook 快速上手:
深入学习
深入了解 WFST 和语法定制:
贡献与支持
欢迎社区贡献!如果你有任何问题、建议或想要贡献代码,请访问 Github 仓库。
引用
如果你在研究或项目中使用了 nemo-text-processing,请引用以下文献:
@inproceedings{zhang21ja_interspeech,
author={Yang Zhang and Evelina Bakhturina and Boris Ginsburg},
title={{NeMo (Inverse) Text Normalization: From Development to Production}},
year=2021,
booktitle={Proc. Interspeech 2021},
pages={4857--4859}
}
@inproceedings{bakhturina22_interspeech,
author={Evelina Bakhturina and Yang Zhang and Boris Ginsburg},
title={{Shallow Fusion of Weighted Finite-State Transducer and Language Model for
Text Normalization}},
year=2022,
booktitle={Proc. Interspeech 2022}
}
许可证
nemo-text-processing 采用 Apache 2.0 许可证。
通过 nemo-text-processing,你可以轻松应对复杂的文本处理任务,提升应用的性能和用户体验。快来尝试吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
py2exe:Python 3 的独立可执行文件生成工具【亲测免费】 mingw-w64-x86-64-V8.1.0-win32-seh离线安装包
【亲测免费】 华炎魔方低代码平台 - Steedos Platform 开源项目快速入门指南【亲测免费】 鼠标键盘录制和自动化操作工具【亲测免费】 ViennaRNA 开源项目指南 Python+OpenCV实现车牌检测与识别【亲测免费】 Holistically-Nested Edge Detection (HED) 项目使用教程【免费下载】 博途辅助工具:利用Openness API自动生成程序 计算机组成原理:自己动手画CPU 实训代码【亲测免费】 笔记本自带键盘一键禁用启用
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882