Supervised Descent 项目教程
2024-08-19 01:54:56作者:邵娇湘
项目介绍
Supervised Descent 是一个用于解决非线性最小二乘问题的开源库。它基于监督下降方法(Supervised Descent Method),该方法在计算机视觉领域,尤其是在人脸对齐任务中表现出色。项目的主要目标是提供一个高效且易于使用的工具,帮助研究人员和开发者解决复杂的优化问题。
项目快速启动
环境准备
在开始之前,请确保您的开发环境已经安装了以下依赖:
- CMake (>= 3.1)
- C++11 兼容的编译器
- Eigen 库
克隆项目
首先,克隆项目到本地:
git clone https://github.com/patrikhuber/superviseddescent.git
cd superviseddescent
构建项目
使用 CMake 构建项目:
mkdir build
cd build
cmake ..
make
运行示例
项目中包含了一些示例代码,您可以通过以下命令运行:
./examples/example_face_alignment
应用案例和最佳实践
人脸对齐
Supervised Descent 最常见的应用是人脸对齐。通过使用预训练的模型,可以准确地定位人脸的关键点,如眼睛、鼻子和嘴巴的位置。以下是一个简单的代码示例:
#include "superviseddescent/superviseddescent.hpp"
int main() {
// 加载预训练模型
superviseddescent::Model model("path/to/pretrained/model.bin");
// 加载图像
cv::Mat image = cv::imread("path/to/image.jpg");
// 检测人脸
std::vector<cv::Point2f> landmarks = model.detect(image);
// 绘制关键点
for (const auto& point : landmarks) {
cv::circle(image, point, 2, cv::Scalar(0, 255, 0), -1);
}
// 显示结果
cv::imshow("Face Alignment", image);
cv::waitKey(0);
return 0;
}
最佳实践
- 数据预处理:确保输入数据的质量,进行必要的预处理,如归一化和去噪。
- 模型选择:根据具体任务选择合适的预训练模型,或者训练自己的模型。
- 参数调优:通过实验调整模型参数,以达到最佳性能。
典型生态项目
Supervised Descent 可以与其他计算机视觉库和工具结合使用,形成强大的生态系统。以下是一些典型的生态项目:
- OpenCV:用于图像处理和计算机视觉任务。
- dlib:提供高级的机器学习算法和工具,如人脸检测和识别。
- Eigen:用于线性代数运算的高性能库。
通过结合这些工具,可以构建更加复杂和强大的计算机视觉应用。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0119AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287