**监督式机器学习实战课程:R语言版**
本教程基于Julia Silge在GitHub上托管的开源项目监督式机器学习案例研究,它是一个免费的互动性tidymodels课程。本课程专为希望深入理解并实践R语言中监督式机器学习的开发者设计。
1. 项目介绍
监督式机器学习案例研究课程是围绕R语言构建的,旨在通过四个实际案例研究来引导学习者从探索性数据分析到模型评估的全过程。该课程采用了tidyverse和tidymodels生态系统,确保了数据处理和建模过程的一致性和高效性。课程由Ines Montani设计网络框架,并得到Florencia D'Andrea的支持以建立网站。其采用创新的教学方式,结合Gatsby和Reveal.js技术实现前端展示,而代码执行则依赖于Binder,提供了在线交互体验。
2. 项目快速启动
要开始这个课程,首先你需要克隆该项目到本地或直接在线访问课程内容:
git clone https://github.com/juliasilge/supervised-ML-case-studies-course.git
如果你选择在本地运行,确保已安装必要的R软件包,如tidyverse和tidymodels系列包。你可以通过以下命令安装这些包(如果尚未安装):
install.packages(c("tidyverse", "tidymodels"))
然后,进入课程目录,跟随提供的README.md文件指示或访问在线课程站点开始学习之旅。
3. 应用案例和最佳实践
课程精心设计了四个不同的案例研究,涵盖了监督学习的多个应用场景,比如分类和回归任务。每个案例不仅教授如何构建模型,还强调数据预处理的重要性、特征选择策略以及模型性能的评估和调优。通过实践,学员能够掌握如何在现实世界的数据集上应用这些最佳实践,包括数据清洗、特征工程、模型选择与验证等关键步骤。
4. 典型生态项目
本课程是tidymodels生态系统的一部分,该生态系统包含了诸如parsnip、recipes、yardstick等多个R包,它们共同支持了一个统一且模块化的机器学习流程。对于想要深化对R中机器学习工具理解的开发者而言,参与tidymodels社区及利用其丰富的资源,如drake进行工作流管理,或使用tune进行参数优化,都是提升技能的好方法。
此教程仅为概览,详细的学习旅程将涵盖每个案例的逐步指南和深入的理论解析。加入这趟旅程,您将不仅是学习监督式机器学习的技术细节,还将深入了解如何将这些知识应用于解决实际问题。立即开始,开启您的R语言机器学习探险吧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00