首页
/ **监督式机器学习实战课程:R语言版**

**监督式机器学习实战课程:R语言版**

2024-09-23 11:25:11作者:董斯意

本教程基于Julia Silge在GitHub上托管的开源项目监督式机器学习案例研究,它是一个免费的互动性tidymodels课程。本课程专为希望深入理解并实践R语言中监督式机器学习的开发者设计。

1. 项目介绍

监督式机器学习案例研究课程是围绕R语言构建的,旨在通过四个实际案例研究来引导学习者从探索性数据分析到模型评估的全过程。该课程采用了tidyverse和tidymodels生态系统,确保了数据处理和建模过程的一致性和高效性。课程由Ines Montani设计网络框架,并得到Florencia D'Andrea的支持以建立网站。其采用创新的教学方式,结合Gatsby和Reveal.js技术实现前端展示,而代码执行则依赖于Binder,提供了在线交互体验。

2. 项目快速启动

要开始这个课程,首先你需要克隆该项目到本地或直接在线访问课程内容:

git clone https://github.com/juliasilge/supervised-ML-case-studies-course.git

如果你选择在本地运行,确保已安装必要的R软件包,如tidyverse和tidymodels系列包。你可以通过以下命令安装这些包(如果尚未安装):

install.packages(c("tidyverse", "tidymodels"))

然后,进入课程目录,跟随提供的README.md文件指示或访问在线课程站点开始学习之旅。

3. 应用案例和最佳实践

课程精心设计了四个不同的案例研究,涵盖了监督学习的多个应用场景,比如分类和回归任务。每个案例不仅教授如何构建模型,还强调数据预处理的重要性、特征选择策略以及模型性能的评估和调优。通过实践,学员能够掌握如何在现实世界的数据集上应用这些最佳实践,包括数据清洗、特征工程、模型选择与验证等关键步骤。

4. 典型生态项目

本课程是tidymodels生态系统的一部分,该生态系统包含了诸如parsnip、recipes、yardstick等多个R包,它们共同支持了一个统一且模块化的机器学习流程。对于想要深化对R中机器学习工具理解的开发者而言,参与tidymodels社区及利用其丰富的资源,如drake进行工作流管理,或使用tune进行参数优化,都是提升技能的好方法。


此教程仅为概览,详细的学习旅程将涵盖每个案例的逐步指南和深入的理论解析。加入这趟旅程,您将不仅是学习监督式机器学习的技术细节,还将深入了解如何将这些知识应用于解决实际问题。立即开始,开启您的R语言机器学习探险吧!

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
270
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
909
541
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
341
1.21 K
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
142
188
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
377
387
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
63
58
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.1 K
0
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4