Speech Emotion Analyzer 使用教程
2026-01-20 01:09:13作者:卓炯娓
1. 项目介绍
Speech Emotion Analyzer 是一个基于深度学习的开源项目,旨在从语音中检测和分类不同的情绪。该项目由 Mitesh Puthran 开发,使用 Python 和 Keras 构建,能够识别五种不同的男性和女性情绪:中性、平静、快乐、悲伤、愤怒、恐惧、厌恶和惊讶。
主要功能
- 情绪识别:能够从音频文件中识别出不同的情绪。
- 性别识别:能够区分男性和女性的声音。
- 高精度:模型在区分男性和女性声音时达到100%准确性,并对情绪有超过70%的识别率。
应用场景
- 市场营销:根据消费者的情绪状态推荐相应的产品,提高购买转化率。
- 汽车行业:在自动驾驶车辆中,通过识别驾驶员情绪来调整车速,确保行驶安全。
- 心理健康监测:用于监测和分析用户的情绪状态,提供个性化的服务和建议。
2. 项目快速启动
环境准备
- Python 3.6 或更高版本
- Keras 2.2.4 或更高版本
- LibROSA 0.7.2 或更高版本
安装依赖
pip install keras librosa
克隆项目
git clone https://github.com/MiteshPuthran/Speech-Emotion-Analyzer.git
cd Speech-Emotion-Analyzer
运行示例
import librosa
import numpy as np
from keras.models import model_from_json
# 加载模型结构
with open('model.json', 'r') as json_file:
loaded_model_json = json_file.read()
model = model_from_json(loaded_model_json)
# 加载模型权重
model.load_weights("Emotion_Voice_Detection_Model.h5")
# 加载音频文件
audio_path = 'path_to_your_audio_file.wav'
audio, sample_rate = librosa.load(audio_path, res_type='kaiser_fast')
mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=13)
mfccs_processed = np.mean(mfccs.T, axis=0)
# 预测情绪
emotion_prediction = model.predict(np.expand_dims(mfccs_processed, axis=0))
emotion_label = np.argmax(emotion_prediction)
# 情绪标签映射
emotion_labels = ['female_angry', 'female_calm', 'female_fearful', 'female_happy', 'female_sad',
'male_angry', 'male_calm', 'male_fearful', 'male_happy', 'male_sad']
print(f"Detected Emotion: {emotion_labels[emotion_label]}")
3. 应用案例和最佳实践
市场营销
在市场营销中,通过分析消费者的语音情绪,可以更精准地推荐产品或服务。例如,当检测到消费者情绪为“快乐”时,可以推荐相关的高兴产品;当情绪为“悲伤”时,可以推荐安慰类产品。
汽车行业
在自动驾驶汽车中,通过实时监测驾驶员的情绪,可以调整车辆的速度和驾驶模式,确保行驶安全。例如,当检测到驾驶员情绪为“愤怒”时,可以自动降低车速,提醒驾驶员保持冷静。
心理健康监测
在心理健康监测中,通过定期分析用户的语音情绪,可以及时发现用户的情绪波动,提供相应的帮助和建议。例如,当检测到用户情绪持续低落时,可以推荐心理咨询服务。
4. 典型生态项目
LibROSA
LibROSA 是一个用于音频和音乐分析的 Python 库,提供了丰富的音频处理功能,如特征提取、频谱分析等。Speech Emotion Analyzer 项目中使用了 LibROSA 进行音频特征提取。
Keras
Keras 是一个高级神经网络 API,能够运行在 TensorFlow、CNTK 或 Theano 之上。Speech Emotion Analyzer 项目使用 Keras 构建和训练深度学习模型。
RAVDESS 和 SAVEE 数据集
RAVDESS 和 SAVEE 是两个常用的语音情绪数据集,包含了丰富的情绪录音样本。Speech Emotion Analyzer 项目使用了这两个数据集进行模型训练和验证。
通过以上模块的介绍和实践,您可以快速上手 Speech Emotion Analyzer 项目,并将其应用于不同的场景中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355