多模态语音情绪识别与歧义解决:轻量级模型的挑战
概览
多模态语音情绪识别是音频处理领域一个复杂且富有挑战的任务,因为情感本身的定义就充满了歧义。在这个项目中,我们构建了轻量级的多模态机器学习模型,并将其与较重且解释性较差的深度学习模型进行了比较。在构建这两种类型的模型时,我们都从给定的音频信号中提取手工特征。实验结果显示,轻量级模型在某些情况下甚至可以超越深度学习基线,达到IEMOCAP数据集上的最新最优性能。
我们训练的模型包括:
- 基于机器学习(ML)的:逻辑回归、支持向量机、随机森林、极端梯度提升和多项式朴素贝叶斯。
- 基于深度学习(DL)的:多层感知机和LSTM分类器。
该项目是在滑铁卢大学的Richard Mann教授开设的计算机音频课程(CS 698)中作为课程项目进行的。如需更详细的说明,请查阅报告。
数据集
本工作中的所有实验都基于IEMOCAP数据集。有关数据预处理的详细信息,敬请参考报告。
环境要求
所有的实验都在以下库的环境下测试:
- xgboost==0.82
- torch==1.0.1.post2
- scikit-learn==0.20.3
- numpy==1.16.2
- jupyter==1.0.0
- pandas==0.24.1
- librosa==0.7.0
建议创建一个新的Python虚拟环境来安装这些依赖项。在新环境中运行pip install -r requirements.txt
即可。
运行代码指南
- 使用命令
git clone git@github.com:Demfier/multimodal-speech-emotion-recognition
克隆此仓库。 - 执行
cd multimodal-speech-emotion-recognition/
进入项目根目录。 - 启动Jupyter Notebook,执行
jupyter notebook
。 - 运行
1_extract_emotion_labels.ipynb
以从转录文本中提取标签并准备其他所需数据到CSV文件。 - 运行
2_build_audio_vectors.ipynb
从原始wav文件构建矢量并保存为pickle文件。 - 运行
3_extract_audio_features.ipynb
从音频矢量中提取8维音频特征向量。 - 运行
4_prepare_data.ipynb
对音频和视频数据进行预处理和准备。 - 首先训练LSTMClassifier以便与其他模型进行比较:
- 根据需要修改
config.py
配置文件(例如,如果要训练语音2情感分类器,修改lstm_classifier/s2e/config.py
)。对训练文本2情感(t2e
)和文本+语音2情感(combined
)分类器的操作类似。 - 在
lstm_classifier/{exp_mode}
下运行python lstm_classifier.py
训练LSTM分类器(可能的exp_mode
值:s2e/t2e/combined
)。
- 根据需要修改
- 运行
5_audio_classification.ipynb
训练基于音频的机器学习分类器。 - 运行
5.1_sentence_classification.ipynb
训练基于文本的机器学习分类器。 - 运行
5.2_combined_classification.ipynb
训练基于音频+文本的机器学习分类器。
**注意:**确保在笔记本书中指定正确的模型路径,目前不是完全相对的,需要一些重构。
**更新:**可从此处下载预处理后的数据文件以跳过步骤4-7: https://www.dropbox.com/scl/fo/jdzz2y9nngw9rxsbz9vyj/h?rlkey=bji7zcqclusagzfwa7alm59hx&dl=0
结果
已报告不同实验的准确率、F1得分、精确率和召回率。
音频
模型 | 准确率 | F1 | 精确率 | 召回率 |
---|---|---|---|---|
RF | 56.0 | 56.0 | 57.2 | 57.3 |
XGB | 55.6 | 56.0 | 56.9 | 56.8 |
SVM | 33.7 | 15.2 | 17.4 | 21.5 |
MNB | 31.3 | 9.1 | 19.6 | 17.2 |
LR | 33.4 | 14.9 | 17.8 | 20.9 |
MLP | 41.0 | 36.5 | 42.2 | 35.9 |
LSTM | 43.6 | 43.4 | 53.2 | 40.6 |
ARE (4类) | 56.3 | - | 54.6 | - |
E1 (4类) | 56.2 | 45.9 | 67.6 | 48.9 |
E1 | 56.6 | 55.7 | 57.3 | 57.3 |
E1: 集成(RF + XGB + MLP)
文本
模型 | 准确率 | F1 | 精确率 | 召回率 |
---|---|---|---|---|
RF | 62.2 | 60.8 | 65.0 | 62.0 |
XGB | 56.9 | 55.0 | 70.3 | 51.8 |
SVM | 62.1 | 61.7 | 62.5 | 63.5 |
MNB | 61.9 | 62.1 | 71.8 | 58.6 |
LR | 64.2 | 64.3 | 69.5 | 62.3 |
MLP | 60.6 | 61.5 | 62.4 | 63.0 |
LSTM | 63.1 | 62.5 | 65.3 | 62.8 |
TRE (4类) | 65.5 | - | 63.5 | - |
E1 (4类) | 63.1 | 61.4 | 67.7 | 59.0 |
E2 | 64.9 | 66.0 | 71.4 | 63.2 |
E2: 集成(RF + XGB + MLP + MNB + LR) E1: 集成(RF + XGB + MLP)
音频 + 文本
模型 | 准确率 | F1 | 精确率 | 召回率 |
---|---|---|---|---|
RF | 65.3 | 65.8 | 69.3 | 65.5 |
XGB | 62.2 | 63.1 | 67.9 | 61.7 |
SVM | 63.4 | 63.8 | 63.1 | 65.6 |
MNB | 60.5 | 60.3 | 70.3 | 57.1 |
MLP | 66.1 | 68.1 | 68.0 | 69.6 |
LR | 63.2 | 63.7 | 66.9 | 62.3 |
LSTM | 64.2 | 64.7 | 66.1 | 65.0 |
MDRE (4类) | 75.3 | - | 71.8 | - |
E1 (4类) | 70.3 | 67.5 | 73.2 | 65.5 |
E2 | 70.1 | 71.8 | 72.9 | 71.5 |
更多详细信息,请参阅报告。
引用
如果你发现这个工作有价值,请引用:
@article{sahu2019multimodal,
title={多模态语音情绪识别与歧义解决},
author={Sahu, Gaurav},
journal={arXiv preprint arXiv:1904.06022},
year={2019}
}
推荐理由:
这款开源项目提供了一种新颖的策略,即使用轻量级机器学习模型在多模态情感识别任务中挑战深度学习。对于资源有限或对可解释性有特殊需求的开发者来说,这是一个绝佳的选择。此外,它提供了一个详尽的工作流程,方便研究者理解并复现实验结果。通过集成多个模型,系统整体性能得到了显著提升,这为未来的情感分析研究提供了宝贵的见解。
这个项目的另一个亮点在于其使用了广泛认可的IEMOCAP数据集,使得任何后续研究都可以直接与现有的标准进行对比。不论是学术研究人员还是工业界的实践者,都能从中受益,提高他们的情感识别解决方案。
总之,如果你正在寻找一种高效、灵活并且易于实施的情绪识别方法,那么这款开源项目绝对值得你的关注和使用。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04