PyTorch_GBW_LM 项目使用教程
2024-09-15 23:59:39作者:胡易黎Nicole
1. 项目目录结构及介绍
PyTorch_GBW_LM/
├── data/
│ ├── README.md
│ └── ...
├── models/
│ ├── README.md
│ └── ...
├── utils/
│ ├── README.md
│ └── ...
├── config/
│ ├── config.yaml
│ └── ...
├── main.py
├── requirements.txt
├── README.md
└── ...
目录结构介绍
- data/: 存放数据集的目录,包含数据集的说明文件
README.md
和其他相关数据文件。 - models/: 存放模型定义的目录,包含模型的说明文件
README.md
和其他模型相关的文件。 - utils/: 存放工具函数和辅助代码的目录,包含工具函数的说明文件
README.md
和其他辅助代码文件。 - config/: 存放配置文件的目录,包含项目的配置文件
config.yaml
和其他配置相关的文件。 - main.py: 项目的启动文件,负责初始化模型、加载数据、训练和评估模型。
- requirements.txt: 项目依赖的 Python 包列表。
- README.md: 项目的说明文件,包含项目的概述、安装步骤、使用方法等信息。
2. 项目的启动文件介绍
main.py
main.py
是项目的启动文件,负责初始化模型、加载数据、训练和评估模型。以下是 main.py
的主要功能模块:
import argparse
import yaml
from models import Model
from utils import DataLoader, Trainer
def main():
# 解析命令行参数
parser = argparse.ArgumentParser(description="PyTorch GBW Language Model")
parser.add_argument('--config', type=str, default='config/config.yaml', help='Path to the config file')
args = parser.parse_args()
# 加载配置文件
with open(args.config, 'r') as f:
config = yaml.safe_load(f)
# 初始化模型
model = Model(config['model'])
# 加载数据
data_loader = DataLoader(config['data'])
train_loader, val_loader = data_loader.load_data()
# 初始化训练器
trainer = Trainer(model, train_loader, val_loader, config['train'])
# 训练模型
trainer.train()
if __name__ == "__main__":
main()
主要功能模块
- 命令行参数解析: 使用
argparse
模块解析命令行参数,支持用户指定配置文件路径。 - 配置文件加载: 使用
yaml
模块加载配置文件,配置文件路径由命令行参数指定。 - 模型初始化: 从
models
模块中导入模型类Model
,并根据配置文件初始化模型。 - 数据加载: 从
utils
模块中导入数据加载类DataLoader
,并根据配置文件加载训练和验证数据。 - 训练器初始化: 从
utils
模块中导入训练器类Trainer
,并根据配置文件初始化训练器。 - 模型训练: 调用训练器的
train
方法开始训练模型。
3. 项目的配置文件介绍
config/config.yaml
config.yaml
是项目的配置文件,包含了模型、数据、训练等各个模块的配置参数。以下是配置文件的示例内容:
model:
name: "LSTM"
hidden_size: 256
num_layers: 2
dropout: 0.2
data:
path: "data/train.txt"
batch_size: 32
seq_length: 35
train:
epochs: 10
learning_rate: 0.001
save_path: "checkpoints/model.pt"
配置文件参数介绍
-
model: 模型相关的配置参数。
name
: 模型名称,例如 "LSTM"。hidden_size
: LSTM 隐藏层的维度。num_layers
: LSTM 的层数。dropout
: 模型中的 dropout 概率。
-
data: 数据相关的配置参数。
path
: 训练数据的路径。batch_size
: 每个 batch 的大小。seq_length
: 序列的长度。
-
train: 训练相关的配置参数。
epochs
: 训练的 epoch 数。learning_rate
: 学习率。save_path
: 模型保存的路径。
通过配置文件,用户可以方便地调整模型的参数、数据路径和训练设置,而无需修改代码。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
195
2.17 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
79

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
207
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17