Quix Streams 3.14.0版本发布:流处理框架的增强与优化
Quix Streams是一个开源的流处理框架,专为构建实时数据管道和流处理应用而设计。它提供了简洁的Python API,使开发者能够轻松处理Kafka等消息系统中的流数据。在最新发布的3.14.0版本中,Quix Streams带来了多项重要改进和新功能,进一步增强了其流处理能力。
核心功能增强
多数据流合并处理
3.14.0版本引入了StreamingDataFrame.concat()方法,这是一个重大改进,允许开发者将来自不同主题或同一数据框不同分支的数据流合并处理。这一功能特别适合需要聚合多个数据源的场景。
例如,在电商分析中,可以将来自不同地区的订单数据合并计算:
# 创建不同地区的订单数据流
orders_uk = app.dataframe(topic_uk)
orders_de = app.dataframe(topic_de)
# 货币转换处理
orders_uk["amount_usd"] = orders_uk["amount"].apply(convert_currency("GBP", "USD"))
orders_de["amount_usd"] = orders_de["amount"].apply(convert_currency("EUR", "USD"))
# 合并数据流
orders_combined = orders_uk.concat(orders_de)
# 计算1小时窗口内的平均订单金额
orders_combined.tumbling_window(timedelta(hours=1)).agg(avg_amount_usd=Mean("amount_usd"))
这种方法简化了多源数据处理的复杂性,使代码更加清晰和模块化。
新增聚合函数
本次更新新增了四种实用的窗口聚合函数:
Earliest- 获取窗口中时间戳最早的值Latest- 获取窗口中时间戳最新的值First- 获取窗口中第一个到达的值(基于处理顺序)Last- 获取窗口中最后一个到达的值(基于处理顺序)
这些新聚合函数扩展了时间窗口分析的能力,特别是First和Last函数不依赖时间戳,而是基于数据到达顺序,这在某些场景下非常有用。
性能优化与改进
状态管理增强
新版本增加了对原始字节数据的直接存储支持:
State.get_bytes- 获取存储的原始字节数据State.set_bytes- 存储原始字节数据
这为需要直接操作二进制数据的场景提供了更高效的支持。
单分区优化
当使用StreamingDataFrame.group_by()处理单分区主题时,框架现在会自动跳过不必要的重分区步骤,提高了处理效率。
连接器改进
新增InfluxDB3数据源
3.14.0版本新增了InfluxDB3数据源连接器,可以直接从InfluxDB时序数据库中读取数据作为流处理的数据源。
现有连接器优化
- 文件源连接器进行了更新和改进
- MongoDB连接器修复了headers字典为None时的处理问题
- InfluxDB3接收器改进了时间戳类型的处理
开发者体验提升
类型提示支持
项目现在包含了py.typed标记文件,正式表明Quix Streams是一个类型化的Python包,为使用类型检查工具的开发者提供了更好的支持。
文档改进
文档中增加了关于使用ListSink添加元数据的详细信息,帮助开发者更好地利用这一功能。
内部架构优化
- 重构了
RowConsumer和RowProducer的实现 - 将PausingManager合并到RowConsumer中,简化了内部结构
- 更新了CI工作流,支持Python 3.13版本测试
总结
Quix Streams 3.14.0版本通过引入数据流合并处理、新增聚合函数、优化状态管理和改进连接器等多项增强,显著提升了框架的功能性和易用性。这些改进使得开发者能够更高效地构建复杂的流处理应用,特别是在需要处理多源数据或进行复杂时间窗口分析的场景中。
对于现有用户,建议评估新功能如何优化现有应用;对于新用户,3.14.0版本提供了更加强大和易用的流处理解决方案,是开始使用Quix Streams的好时机。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00