NEAR AI 命令行工具全面指南:从入门到精通
2025-06-19 05:23:14作者:裘旻烁
前言
NEAR AI 命令行工具(CLI)是开发者与 NEAR AI 生态系统交互的核心工具。本文将全面介绍该工具的功能、安装方法以及各类操作命令,帮助开发者高效地创建、部署和管理 AI 代理与模型。
环境准备
系统要求
- Python 3.9-3.11(不支持 3.12 及以上版本)
- NEAR 账户(用于身份验证)
虚拟环境配置
为避免依赖冲突,强烈建议使用虚拟环境。以下是三种主流虚拟环境工具的配置方法:
使用 uv 工具
uv venv --python 3.11
source .venv/bin/activate
使用 Conda
conda create -n nearai python=3.11
conda activate nearai
使用 pyenv
pyenv install 3.11
pyenv local 3.11
python -m venv .venv
source .venv/bin/activate
安装 NEAR AI CLI
通过 pip 安装
pip install nearai
本地安装(开发模式)
git clone 项目仓库地址
cd nearai
pip install -e .
账户管理
登录流程
- 确保已创建 NEAR 账户
- 执行登录命令:
nearai login
- 按照提示完成浏览器认证流程
高级登录选项
- 使用已有账户 ID 登录:
nearai login --accountId name.near
- 使用认证密钥登录:
nearai login --accountId name.near --authKey key
- 仅显示远程登录 URL:
nearai login --remote
账户状态检查
nearai login status
退出登录
nearai logout
代理开发
创建新代理
nearai agent create --name my_agent --description "我的第一个AI代理"
本地开发模式
nearai agent dev
代理交互测试
nearai agent interactive --agent=namespace/agent_name/1.0.0
代理任务执行
nearai agent task namespace/agent_name/1.0.0 "执行特定任务"
代理上传
nearai agent upload --local_path=./my_agent --bump
注册表管理
查看注册表项信息
nearai registry info namespace/item_name/1.0.0
生成元数据模板
nearai registry metadata-template --local_path=./my_agent
列出注册表内容
nearai registry list --category=agent --total=10
下载注册表项
nearai registry download namespace/item_name/1.0.0
模型操作
运行基准测试
nearai benchmark run my_dataset my_solver --max_concurrent=4
与模型交互
nearai hub chat --query="AI是什么?" --model=gpt-3.5-turbo
启动本地推理服务
nearai vllm run
模型微调
nearai finetune start
配置管理
查看配置
nearai config show
设置配置项
nearai config set api_url https://api.example.com
最佳实践
- 版本控制:始终在虚拟环境中工作,避免系统级依赖冲突
- 增量更新:上传代理时使用
--bump参数进行小版本更新 - 性能优化:基准测试时合理设置
--max_concurrent参数 - 安全实践:避免在命令行中直接使用认证密钥,考虑使用环境变量
常见问题解答
Q: 为什么需要特定 Python 版本? A: NEAR AI 依赖的某些库对 Python 版本有严格要求,3.9-3.11 能确保最佳兼容性。
Q: 如何查看所有可用命令?
A: 直接运行 nearai 或使用 nearai --help 查看完整命令列表。
Q: 上传代理时版本号如何管理?
A: 使用 --bump、--minor_bump 或 --major_bump 参数控制版本号增量。
通过本指南,您应该已经掌握了 NEAR AI 命令行工具的核心功能。建议从创建第一个代理开始实践,逐步探索更高级的功能。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178