高效近似重复图像搜索与删除工具
2024-06-14 15:26:51作者:裴锟轩Denise
作者:Umberto Griffo Twitter:@UmbertoGriffo
这款Python脚本是一款命令行工具,专门用于从目标目录中可视化、检查并删除近似重复的图像。它利用了ImageHash库中的pHash算法进行图像哈希,并将哈希值存储在KDTree结构中,进行最近邻搜索。
请注意: 我不对该脚本中的错误或意外删除图片负责。请谨慎使用并在操作前备份你的图片。这个算法设计用于发现几乎相同的图像,但不适用于寻找概念上相似的图像。
内容概览
pHash定义
pHash是一种基于图像特征生成独特(但非唯一)指纹的方法,这些指纹可比较。相对于MD5和SHA1等加密哈希函数,感知哈希(perceptual hashes)是一个不同的概念。即使图像有缩放、不同比例或轻微色彩差异,它们仍能匹配到类似图像。
KDTree定义
KDTree是k维空间的一种空间划分数据结构,常用于组织点数据。特别地,它有助于按照特定条件对数据点进行组织和分区。KDTree在涉及多维度搜索键(如范围搜索和最近邻搜索)的应用中非常有用。
平均复杂度
| 操作 | 查找 | 插入 | 删除 |
|---|---|---|---|
| 时间 | O(n) | O(log n) | O(log n) |
其中n是点的数量。
搜索流程
删除过程
安装
查看INSTALL.md获取安装指南。
如何使用Makefile
先决条件
安装Python3和virtualenv,参考INSTALL.md中的“选项2”。
- 全部操作:
make all- 进行设置、测试和打包。
- 设置:
make setup-env- 安装所有依赖项。
- 导出环境依赖:
make export_env- 导出一个requirements.txt文件,包含环境详细依赖。
- 测试:
make test- 运行所有测试。
- 使用pytest。
- 清理:
make clean- 移除环境。
- 移除所有缓存文件。
- 检查:
make check- 确保
which pip3和which python3指向正确路径。
- 确保
- 代码风格检查:
make lint- 检查PEP8合规性和代码异味,使用pylint。
- 打包:
make package- 创建软件包以安装。
注意: 作为初始化命令运行设置(或在清理后运行)
使用方法
参数
<command> delete 或 show 或 search。
--images-path /path/to/images/
图像所在的目录。
--output-path /path/to/output/
结果保存的目录。
-q /path/to/image/, --query /path/to/image/
查询图像的路径
--tree-type {KDTree,cKDTree}
--leaf-size LEAF_SIZE
树的叶子大小。
--hash-algorithm {average_hash,dhash,phash,whash}
使用的哈希算法。
--hash-size HASH_SIZE
哈希的尺寸。
-d {euclidean,l2,minkowski,p,manhattan,cityblock,l1,chebyshev,infinity}, --distance-metric {euclidean,l2,minkowski,p,manhattan,cityblock,l1,chebyshev,infinity}
距离度量。
--nearest-neighbors NEAREST_NEIGHBORS
最近邻数量。
--threshold THRESHOLD
门限值。
--parallel [parallel]
是否启用并行计算。
--batch-size BATCH_SIZE
并行时使用的批次大小。
--backup-keep [BACKUP_KEEP]
是否保存要保留的图像。
--backup-duplicate [BACKUP_DUPLICATE]
是否保存副本。
--safe-deletion [SAFE_DELETION]
是否执行安全删除(不实际删除)。
--image-w IMAGE_W 将源图像调整为指定大小。
--image-h IMAGE_H 将源图像调整为指定大小。
从目标目录中删除近似重复图像
$ deduplication delete --images_path <target_dir> --output_path <output_dir> --tree_type KDTree
例如:
deduplication delete \
--images-path datasets/potatoes_multi_folder \
--output-path outputs \
--tree-type KDTree \
--threshold 40 \
--parallel y \
--nearest-neighbors 5 \
--hash-algorithm phash \
--hash-size 8 \
--distance-metric manhattan \
--backup-keep y \
--backup-duplicate y \
--safe-deletion y \
从指定的查询图像中查找近似重复图像
$ deduplication search \
--images_path <target_dir> \
--output_path <output_dir> \
--query <指定的查询图像文件>
例如:
deduplication search \
--images-path datasets/potatoes \
--output-path outputs \
--tree-type KDTree \
--threshold 40 \
--parallel f \
--nearest-neighbors 5 \
--hash-algorithm phash \
--hash-size 8 \
--distance-metric manhattan \
--query datasets/potatoes/2018-12-11-15-031193.png
通过t-SNE显示目标目录中的近似重复图像
$ deduplication show --images_path <target_dir> --output_path <output_dir>
例如:
deduplication show \
--images-path datasets/potatoes \
--output-path outputs \
--parallel y \
--image-w 32 \
--image-h 32
待办事项
- [x] 使用t-SNE来可视化近似重复图像的聚类
- [ ] 参考其他实现获取灵感
- [ ] 试图使用更快的实现,如:平行t-SNE、快速傅立叶变换加速的插值t-SNE、扩展的并行t-SNE和局部敏感哈希
此项目以其高效的搜索机制和安全的删除功能,结合强大的t-SNE可视化,是管理和整理大量图像资源的理想工具。无论你是摄影师、设计师还是数据分析师,这款工具都能帮助你有效地处理重复图像问题。立即尝试,让图像管理变得轻松!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878