Leg Tracker:高效精准的激光雷达人体追踪系统
2024-09-21 05:51:08作者:魏献源Searcher
项目介绍
Leg Tracker 是一款基于ROS(Robot Operating System)的开源项目,专注于使用2D激光雷达进行人体追踪。该项目通过先进的算法和机器学习技术,能够准确识别并跟踪环境中的人体,适用于各种机器人应用场景,如服务机器人、安保机器人等。Leg Tracker不仅提供了丰富的功能和参数配置,还支持自定义训练模型,以适应不同的环境和需求。
项目技术分析
Leg Tracker的核心技术包括激光扫描数据处理、聚类分析、人体检测和跟踪。以下是主要技术点的详细分析:
- 激光扫描数据处理:通过
laser_processor.cpp文件,项目能够将激光扫描数据分割成多个聚类,基于欧几里得距离进行初步的物体识别。 - 聚类分析:
cluster_features.cpp文件计算扫描聚类的几何特征,为后续的人体检测提供数据支持。 - 人体检测:
detect_leg_clusters.cpp文件使用OpenCV的随机森林分类器,根据聚类的形状判断其是否为人体腿部,从而进行初步的人体检测。 - 人体跟踪:
joint_leg_tracker.py脚本结合全局最近邻跟踪方法,对检测到的人体进行持续跟踪,并发布跟踪结果。
项目及技术应用场景
Leg Tracker适用于多种机器人应用场景,特别是那些需要对人体进行精确识别和跟踪的场合。以下是一些典型的应用场景:
- 服务机器人:在餐厅、酒店等环境中,服务机器人需要识别并跟踪顾客,以提供个性化的服务。
- 安保机器人:在公共场所,安保机器人可以通过Leg Tracker实时监控并跟踪可疑人员,提高安全性。
- 医疗辅助机器人:在医院环境中,机器人可以辅助医护人员,跟踪病人位置,提供及时的医疗服务。
项目特点
Leg Tracker具有以下显著特点,使其在众多人体追踪系统中脱颖而出:
- 高精度跟踪:通过先进的算法和机器学习模型,Leg Tracker能够实现高精度的人体跟踪,减少误报和漏报。
- 灵活配置:项目提供了丰富的参数配置选项,用户可以根据实际需求调整系统性能,如扫描频率、聚类距离等。
- 自定义训练:支持用户根据特定环境自定义训练模型,以提高系统在特定场景下的表现。
- 开源社区支持:作为开源项目,Leg Tracker拥有活跃的社区支持,用户可以轻松获取帮助和资源。
结语
Leg Tracker作为一款功能强大且易于使用的人体追踪系统,已经在多个实际应用中证明了其价值。无论您是机器人开发者还是研究人员,Leg Tracker都能为您提供一个高效、精准的解决方案。立即尝试Leg Tracker,开启您的人体追踪之旅!
参考文献:
- A. Leigh, J. Pineau, N. Olmedo and H. Zhang, Person Tracking and Following with 2D Laser Scanners, International Conference on Robotics and Automation (ICRA), Seattle, Washington, USA, 2015. pdf
项目地址:Leg Tracker GitHub
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
218
88
暂无简介
Dart
720
174
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
334
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
435
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19