Leg Tracker:高效精准的激光雷达人体追踪系统
2024-09-21 16:29:56作者:魏献源Searcher
项目介绍
Leg Tracker 是一款基于ROS(Robot Operating System)的开源项目,专注于使用2D激光雷达进行人体追踪。该项目通过先进的算法和机器学习技术,能够准确识别并跟踪环境中的人体,适用于各种机器人应用场景,如服务机器人、安保机器人等。Leg Tracker不仅提供了丰富的功能和参数配置,还支持自定义训练模型,以适应不同的环境和需求。
项目技术分析
Leg Tracker的核心技术包括激光扫描数据处理、聚类分析、人体检测和跟踪。以下是主要技术点的详细分析:
- 激光扫描数据处理:通过
laser_processor.cpp文件,项目能够将激光扫描数据分割成多个聚类,基于欧几里得距离进行初步的物体识别。 - 聚类分析:
cluster_features.cpp文件计算扫描聚类的几何特征,为后续的人体检测提供数据支持。 - 人体检测:
detect_leg_clusters.cpp文件使用OpenCV的随机森林分类器,根据聚类的形状判断其是否为人体腿部,从而进行初步的人体检测。 - 人体跟踪:
joint_leg_tracker.py脚本结合全局最近邻跟踪方法,对检测到的人体进行持续跟踪,并发布跟踪结果。
项目及技术应用场景
Leg Tracker适用于多种机器人应用场景,特别是那些需要对人体进行精确识别和跟踪的场合。以下是一些典型的应用场景:
- 服务机器人:在餐厅、酒店等环境中,服务机器人需要识别并跟踪顾客,以提供个性化的服务。
- 安保机器人:在公共场所,安保机器人可以通过Leg Tracker实时监控并跟踪可疑人员,提高安全性。
- 医疗辅助机器人:在医院环境中,机器人可以辅助医护人员,跟踪病人位置,提供及时的医疗服务。
项目特点
Leg Tracker具有以下显著特点,使其在众多人体追踪系统中脱颖而出:
- 高精度跟踪:通过先进的算法和机器学习模型,Leg Tracker能够实现高精度的人体跟踪,减少误报和漏报。
- 灵活配置:项目提供了丰富的参数配置选项,用户可以根据实际需求调整系统性能,如扫描频率、聚类距离等。
- 自定义训练:支持用户根据特定环境自定义训练模型,以提高系统在特定场景下的表现。
- 开源社区支持:作为开源项目,Leg Tracker拥有活跃的社区支持,用户可以轻松获取帮助和资源。
结语
Leg Tracker作为一款功能强大且易于使用的人体追踪系统,已经在多个实际应用中证明了其价值。无论您是机器人开发者还是研究人员,Leg Tracker都能为您提供一个高效、精准的解决方案。立即尝试Leg Tracker,开启您的人体追踪之旅!
参考文献:
- A. Leigh, J. Pineau, N. Olmedo and H. Zhang, Person Tracking and Following with 2D Laser Scanners, International Conference on Robotics and Automation (ICRA), Seattle, Washington, USA, 2015. pdf
项目地址:Leg Tracker GitHub
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
724
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
198
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460