Leg Tracker:高效精准的激光雷达人体追踪系统
2024-09-21 08:35:37作者:魏献源Searcher
项目介绍
Leg Tracker 是一款基于ROS(Robot Operating System)的开源项目,专注于使用2D激光雷达进行人体追踪。该项目通过先进的算法和机器学习技术,能够准确识别并跟踪环境中的人体,适用于各种机器人应用场景,如服务机器人、安保机器人等。Leg Tracker不仅提供了丰富的功能和参数配置,还支持自定义训练模型,以适应不同的环境和需求。
项目技术分析
Leg Tracker的核心技术包括激光扫描数据处理、聚类分析、人体检测和跟踪。以下是主要技术点的详细分析:
- 激光扫描数据处理:通过
laser_processor.cpp
文件,项目能够将激光扫描数据分割成多个聚类,基于欧几里得距离进行初步的物体识别。 - 聚类分析:
cluster_features.cpp
文件计算扫描聚类的几何特征,为后续的人体检测提供数据支持。 - 人体检测:
detect_leg_clusters.cpp
文件使用OpenCV的随机森林分类器,根据聚类的形状判断其是否为人体腿部,从而进行初步的人体检测。 - 人体跟踪:
joint_leg_tracker.py
脚本结合全局最近邻跟踪方法,对检测到的人体进行持续跟踪,并发布跟踪结果。
项目及技术应用场景
Leg Tracker适用于多种机器人应用场景,特别是那些需要对人体进行精确识别和跟踪的场合。以下是一些典型的应用场景:
- 服务机器人:在餐厅、酒店等环境中,服务机器人需要识别并跟踪顾客,以提供个性化的服务。
- 安保机器人:在公共场所,安保机器人可以通过Leg Tracker实时监控并跟踪可疑人员,提高安全性。
- 医疗辅助机器人:在医院环境中,机器人可以辅助医护人员,跟踪病人位置,提供及时的医疗服务。
项目特点
Leg Tracker具有以下显著特点,使其在众多人体追踪系统中脱颖而出:
- 高精度跟踪:通过先进的算法和机器学习模型,Leg Tracker能够实现高精度的人体跟踪,减少误报和漏报。
- 灵活配置:项目提供了丰富的参数配置选项,用户可以根据实际需求调整系统性能,如扫描频率、聚类距离等。
- 自定义训练:支持用户根据特定环境自定义训练模型,以提高系统在特定场景下的表现。
- 开源社区支持:作为开源项目,Leg Tracker拥有活跃的社区支持,用户可以轻松获取帮助和资源。
结语
Leg Tracker作为一款功能强大且易于使用的人体追踪系统,已经在多个实际应用中证明了其价值。无论您是机器人开发者还是研究人员,Leg Tracker都能为您提供一个高效、精准的解决方案。立即尝试Leg Tracker,开启您的人体追踪之旅!
参考文献:
- A. Leigh, J. Pineau, N. Olmedo and H. Zhang, Person Tracking and Following with 2D Laser Scanners, International Conference on Robotics and Automation (ICRA), Seattle, Washington, USA, 2015. pdf
项目地址:Leg Tracker GitHub
热门项目推荐
相关项目推荐
鸿蒙开发工具大赶集
本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。012hertz
Go 微服务 HTTP 框架,具有高易用性、高性能、高扩展性等特点。Go01每日精选项目
🔥🔥 每日精选已经升级为:【行业动态】,快去首页看看吧,后续都在【首页 - 行业动态】内更新,多条更新哦~🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~029kitex
Go 微服务 RPC 框架,具有高性能、强可扩展的特点。Go00Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie057毕方Talon工具
本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python040PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06mybatis-plus
mybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区018- DDeepSeek-R1探索新一代推理模型,DeepSeek-R1系列以大规模强化学习为基础,实现自主推理,表现卓越,推理行为强大且独特。开源共享,助力研究社区深入探索LLM推理能力,推动行业发展。【此简介由AI生成】Python00
热门内容推荐
最新内容推荐
项目优选
收起

Python - 100天从新手到大师
Python
611
115

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79

✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
112
25

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48

🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29

🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
383
36

🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44

这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0