Sensitive-Word 敏感词库动态添加失效问题解析
2025-06-09 21:11:15作者:温艾琴Wonderful
问题背景
在使用 Sensitive-Word 敏感词过滤库时,开发者可能会遇到一个典型问题:通过 sensitiveWordBs.addWord() 方法动态添加的敏感词无法立即生效。具体表现为新增敏感词后,检测包含该词的文本时返回错误结果。
问题复现场景
在一个 Spring Boot 项目中,开发者配置了 Sensitive-Word 的基本使用方式:
- 通过
IWordDeny接口实现从数据库加载初始敏感词 - 使用
SensitiveWordBs作为核心处理类 - 提供 REST 接口用于动态添加敏感词和检测文本
当调用 /add 接口添加新敏感词(如"一眼")后,立即检测包含该词的文本(如"一眼定镇")时,系统错误地返回了未检测到敏感词的结果。
技术原理分析
Sensitive-Word 库的核心工作机制基于字典树(Trie)数据结构。这种数据结构虽然查询效率高(O(n)时间复杂度,n为文本长度),但在动态更新方面存在一定局限性。
初始化流程
- 应用启动时,
SensitiveWordBs通过init()方法初始化 - 加载
IWordDeny实现提供的初始敏感词列表 - 构建完整的字典树结构
动态添加机制
addWord() 方法的实现原理是:
- 将新词添加到内存中的敏感词集合
- 尝试将该词插入到现有字典树中
问题根源
经过深入分析,该问题主要源于以下技术细节:
- 字典树重建机制:早期版本中,动态添加敏感词后未完全重建字典树结构
- 格式化处理缺失:特别是对数字类敏感词的处理存在遗漏
- 线程安全考虑:高并发场景下,动态更新可能导致数据结构不一致
解决方案
该问题已在 Sensitive-Word v0.22.0 版本中得到彻底修复,主要改进包括:
- 统一格式化处理:对所有类型的敏感词(包括数字、特殊字符等)应用一致的格式化逻辑
- 完善字典树更新:确保动态添加敏感词后完全重建索引结构
- 性能优化:在保证线程安全的前提下,优化了动态更新的效率
最佳实践建议
对于需要使用动态敏感词功能的开发者,建议:
- 版本升级:确保使用 v0.22.0 或更高版本
- 初始化配置:合理设置敏感词加载策略,平衡启动速度和内存占用
- 监控机制:对于关键业务场景,实现敏感词变更的监控和告警
- 性能测试:在高频动态更新场景下进行充分压力测试
总结
敏感词过滤作为内容安全的重要环节,其可靠性和实时性至关重要。Sensitive-Word 库通过持续迭代,已经解决了动态更新的技术难题,为开发者提供了更加稳定可靠的内容过滤解决方案。理解其内部工作机制有助于开发者更好地应用该库,构建更健壮的内容安全体系。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178