Turing.jl v0.39.0版本发布:变分推断接口升级与核心模块重构
Turing.jl是一个基于Julia语言的概率编程框架,它允许用户使用简洁的语法构建复杂的概率模型,并支持多种推断算法。作为Julia生态系统中最重要的概率编程工具之一,Turing.jl持续推动着贝叶斯统计和机器学习的发展。
变分推断接口的重大升级
本次v0.39.0版本最显著的变化是对变分推断(Variational Inference, VI)接口的全面升级,使其与AdvancedVI.jl的0.4版本保持兼容。这一升级为Turing.jl用户带来了多项强大的新功能:
1. 位置-尺度分布族的扩展支持 新版本引入了对密集尺度矩阵的支持,这意味着用户现在可以构建更复杂的变分分布族,特别是那些需要完整协方差矩阵表示的模型。这一改进显著提升了变分后验近似的能力,特别适用于变量间存在复杂相关性的场景。
2. 参数自由的随机优化算法 新增了DoG(Distance over Gradients)和DoWG(Distance over Weighted Gradients)等先进优化算法。这些算法不需要手动调整学习率等超参数,大大简化了变分推断的调参过程,同时保持了良好的收敛性能。
3. 稳定优化的近端算子 引入近端算子技术为优化过程提供了额外的稳定性保障,特别是在处理非光滑目标函数或病态问题时,能够有效防止数值不稳定现象的发生。
4. 更快的收敛控制变量 实现了"sticking-the-landing"控制变量技术,这一方法通过减少梯度估计的方差来加速收敛过程,使得变分推断能够在更少的迭代次数下达到满意的近似精度。
5. 非可微目标的评分梯度估计器 对于包含非可微分组件的概率模型,新版本提供了专门的评分梯度估计器,扩展了变分推断的应用范围,使其能够处理更广泛的统计模型。
核心模块重构与API调整
Turing.Essential模块的移除 为了简化代码结构和提高可维护性,v0.39.0版本移除了Turing.Essential模块。该模块中的功能现在可以直接从Turing或DynamicPPL中导入。这一变化虽然对现有代码可能造成一些影响,但从长远看将提高API的一致性和易用性。
@addlogprob!宏的正式公开
@addlogprob!宏现在被正式纳入Turing.jl的公共接口并导出。这个宏允许用户在模型定义中直接操作对数概率,为构建自定义概率模型提供了更大的灵活性。它的正式公开意味着这一功能将得到长期维护,用户可以放心地在生产代码中使用。
升级建议与兼容性考虑
对于现有用户,升级到v0.39.0版本需要注意以下几点:
-
如果使用了变分推断功能,需要检查现有代码是否与新接口兼容,特别是优化器配置部分可能需要调整。
-
从Turing.Essential导入的功能需要改为从Turing或DynamicPPL导入。
-
可以开始利用
@addlogprob!宏的公共接口特性重构模型代码,以获得更好的可维护性。 -
新版本的变分推断功能提供了更多优化选项,建议用户尝试新的优化算法和梯度估计器,可能会获得更好的性能。
Turing.jl v0.39.0的这些改进进一步巩固了它作为Julia生态中最强大概率编程框架的地位,特别是在变分推断方面提供了更丰富、更稳定的功能集。对于需要进行大规模贝叶斯分析的用户,这些升级将显著提升建模的灵活性和计算效率。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00